摘要:对于python来说,json并不是一种数据类型,可以把它视为函数。json.dumps把字典或列表变成json风格的str类型;json.loads把json风格的str类型变成原来的类型(列表或者字典)

jso官方说明参见:http://json.org/

Python操作json的标准api库参考:http://docs.python.org/library/json.html

对简单数据类型的encoding 和 decoding:

使用简单的json.dumps方法对简单数据类型进行编码,例如:

1
2
3
4
5
6
import json
 
obj= [[1,2,3],123,123.123,'abc',{'key1':(1,2,3),'key2':(4,5,6)}]
encodedjson= json.dumps(obj)
print repr(obj)
print encodedjson

输出:

[[1, 2, 3], 123, 123.123, 'abc', {'key2': (4, 5, 6), 'key1': (1, 2, 3)}] 

[[1, 2, 3], 123, 123.123, "abc", {"key2": [4, 5, 6], "key1": [1, 2, 3]}]

通过输出的结果可以看出,简单类型通过encode之后跟其原始的repr()输出结果非常相似,但是有些数据类型进行了改变,例如上例中的元组则转换为了列表。在json的编码过程中,会存在从python原始类型向json类型的转化过程,具体的转化对照如下:

json.dumps()方法返回了一个str对象encodedjson,我们接下来在对encodedjson进行decode,得到原始数据,需要使用的json.loads()函数:

1
2
3
4
decodejson= json.loads(encodedjson)
print type(decodejson)
print decodejson[4]['key1']
print decodejson

输出:

<type 'list'> 

[1, 2, 3]

[[1, 2, 3], 123, 123.123, u'abc', {u'key2': [4, 5, 6], u'key1': [1, 2, 3]}]

loads方法返回了原始的对象,但是仍然发生了一些数据类型的转化。比如,上例中‘abc’转化为了unicode类型。从json到python的类型转化对照如下:

json.dumps方法提供了很多好用的参数可供选择,比较常用的有sort_keys(对dict对象进行排序,我们知道默认dict是无序存放的),separators,indent等参数。

排序功能使得存储的数据更加有利于观察,也使得对json输出的对象进行比较,例如:

1
2
3
4
5
6
7
8
9
10
data1= {'b':789,'c':456,'a':123}
data2= {'a':123,'b':789,'c':456}
d1= json.dumps(data1,sort_keys=True)
d2= json.dumps(data2)
d3= json.dumps(data2,sort_keys=True)
print d1
print d2
print d3
print d1==d2
print d1==d3

输出:

{"a": 123, "b": 789, "c": 456} 

{"a": 123, "c": 456, "b": 789} 

{"a": 123, "b": 789, "c": 456} 

False 

True

上例中,本来data1和data2数据应该是一样的,但是由于dict存储的无序特性,造成两者无法比较。因此两者可以通过排序后的结果进行存储就避免了数据比较不一致的情况发生,但是排序后再进行存储,系统必定要多做一些事情,也一定会因此造成一定的性能消耗,所以适当排序是很重要的。

indent参数是缩进的意思,它可以使得数据存储的格式变得更加优雅。

1
2
3
data1= {'b':789,'c':456,'a':123}
d1= json.dumps(data1,sort_keys=True,indent=4)
print d1

输出:



    "a": 123, 

    "b": 789, 

    "c": 456 

}

输出的数据被格式化之后,变得可读性更强,但是却是通过增加一些冗余的空白格来进行填充的。json主要是作为一种数据通信的格式存在的,而网络通信是很在乎数据的大小的,无用的空格会占据很多通信带宽,所以适当时候也要对数据进行压缩。separator参数可以起到这样的作用,该参数传递是一个元组,包含分割对象的字符串。

1
2
3
4
5
print 'DATA:',repr(data)
print 'repr(data)            
:'
,len(repr(data))
print 'dumps(data)           
:'
,len(json.dumps(data))
print 'dumps(data,
indent=2)  :'
,len(json.dumps(data,
indent
=4))
print 'dumps(data,
separators):'
,len(json.dumps(data,
separators
=(',',':')))

输出:

DATA: {'a': 123, 'c': 456, 'b': 789} 

repr(data)             : 30 

dumps(data)            : 30 

dumps(data, indent=2)  : 46 

dumps(data, separators): 25

通过移除多余的空白符,达到了压缩数据的目的,而且效果还是比较明显的。

另一个比较有用的dumps参数是skipkeys,默认为False。 dumps方法存储dict对象时,key必须是str类型,如果出现了其他类型的话,那么会产生TypeError异常,如果开启该参数,设为True的话,则会比较优雅的过度。

1
2
data= {'b':789,'c':456,(1,2):123}
print json.dumps(data,skipkeys=True)

输出:

{"c": 456, "b": 789}

处理自己的数据类型

json模块不仅可以处理普通的python内置类型,也可以处理我们自定义的数据类型,而往往处理自定义的对象是很常用的。

首先,我们定义一个类Person。

1
2
3
4
5
6
7
8
9
class Person(object):
    def __init__(self,name,age):
        self.name= name
        self.age= age
    def __repr__(self):
        return 'Person
Object name : %s , age : %d'
 % (self.name,self.age)
if __name__ == '__main__':
    p= Person('Peter',22)
    print p

如果直接通过json.dumps方法对Person的实例进行处理的话,会报错,因为json无法支持这样的自动转化。通过上面所提到的json和python的类型转化对照表,可以发现,object类型是和dict相关联的,所以我们需要把我们自定义的类型转化为dict,然后再进行处理。这里,有两种方法可以使用。

方法一:自己写转化函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
'''
Created
on 2011-12-14
@author:
Peter
'''
import Person
import json
 
p= Person.Person('Peter',22)
 
def object2dict(obj):
    #convert
object to a dict
    d= {}
    d['__class__']= obj.__class__.__name__
    d['__module__']= obj.__module__
    d.update(obj.__dict__)
    return d
 
def dict2object(d):
    #convert
dict to object
    if'__class__' in d:
        class_name= d.pop('__class__')
        module_name= d.pop('__module__')
        module= __import__(module_name)
        class_ = getattr(module,class_name)
        args= dict((key.encode('ascii'),
value)
for key,
value
in d.items())#get
args
        inst= class_(**args)#create
new instance
    else:
        inst= d
    return inst
 
d= object2dict(p)
print d
#{'age':
22, '__module__': 'Person', '__class__': 'Person', 'name': 'Peter'}
 
o= dict2object(d)
print type(o),o
#<class
'Person.Person'> Person Object name : Peter , age : 22
 
dump= json.dumps(p,default=object2dict)
print dump
#{"age":
22, "__module__": "Person", "__class__": "Person", "name": "Peter"}
 
load= json.loads(dump,object_hook= dict2object)
print load
#Person
Object name : Peter , age : 22

上面代码已经写的很清楚了,实质就是自定义object类型和dict类型进行转化。object2dict函数将对象模块名、类名以及__dict__存储在dict对象里,并返回。dict2object函数则是反解出模块名、类名、参数,创建新的对象并返回。在json.dumps 方法中增加default参数,该参数表示在转化过程中调用指定的函数,同样在decode过程中json.loads方法增加object_hook,指定转化函数。

方法二:继承JSONEncoder和JSONDecoder类,覆写相关方法

JSONEncoder类负责编码,主要是通过其default函数进行转化,我们可以override该方法。同理对于JSONDecoder。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
'''
Created
on 2011-12-14
@author:
Peter
'''
import Person
import json
 
p= Person.Person('Peter',22)
 
class MyEncoder(json.JSONEncoder):
    def default(self,obj):
        #convert
object to a dict
        d= {}
        d['__class__']= obj.__class__.__name__
        d['__module__']= obj.__module__
        d.update(obj.__dict__)
        return d
 
class MyDecoder(json.JSONDecoder):
    def __init__(self):
        json.JSONDecoder.__init__(self,object_hook=self.dict2object)
    def dict2object(self,d):
        #convert
dict to object
        if'__class__' in d:
            class_name= d.pop('__class__')
            module_name= d.pop('__module__')
            module= __import__(module_name)
            class_ = getattr(module,class_name)
            args= dict((key.encode('ascii'),
value)
for key,
value
in d.items())#get
args
            inst= class_(**args)#create
new instance
        else:
            inst= d
        return inst
 
 
d= MyEncoder().encode(p)
o=  MyDecoder().decode(d)
 
print d
print type(o),
o

对于JSONDecoder类方法,稍微有点不同,但是改写起来也不是很麻烦。看代码应该就比较清楚了。

转自:http://www.cnblogs.com/coser/archive/2011/12/14/2287739.html

json python api的更多相关文章

  1. Python第十四天 序列化 pickle模块 cPickle模块 JSON模块 API的两种格式

    Python第十四天 序列化  pickle模块  cPickle模块  JSON模块  API的两种格式 目录 Pycharm使用技巧(转载) Python第一天  安装  shell  文件 Py ...

  2. BotVS开发基础—Python API

    代码 import json def main(): # python API列表 https://www.botvs.com/bbs-topic/443 #状态信息 LogStatus(" ...

  3. 《Spark Python API 官方文档中文版》 之 pyspark.sql (一)

    摘要:在Spark开发中,由于需要用Python实现,发现API与Scala的略有不同,而Python API的中文资料相对很少.每次去查英文版API的说明相对比较慢,还是中文版比较容易get到所需, ...

  4. 《Spark Python API 官方文档中文版》 之 pyspark.sql (二)

    摘要:在Spark开发中,由于需要用Python实现,发现API与Scala的略有不同,而Python API的中文资料相对很少.每次去查英文版API的说明相对比较慢,还是中文版比较容易get到所需, ...

  5. 【Ansible】的python api

    [Ansible API] Ansible本身就是由python写成,所有其对python形式的API的支持应该不错. 其API分不同的版本,这个版本也就是ansible本身的版本,可以通过ansib ...

  6. 《Spark Python API 官方文档中文版》 之 pyspark.sql (四)

    摘要:在Spark开发中,由于需要用Python实现,发现API与Scala的略有不同,而Python API的中文资料相对很少.每次去查英文版API的说明相对比较慢,还是中文版比较容易get到所需, ...

  7. 《Spark Python API 官方文档中文版》 之 pyspark.sql (三)

    摘要:在Spark开发中,由于需要用Python实现,发现API与Scala的略有不同,而Python API的中文资料相对很少.每次去查英文版API的说明相对比较慢,还是中文版比较容易get到所需, ...

  8. 如何在 Apache Flink 中使用 Python API?

    本文根据 Apache Flink 系列直播课程整理而成,由 Apache Flink PMC,阿里巴巴高级技术专家 孙金城 分享.重点为大家介绍 Flink Python API 的现状及未来规划, ...

  9. Appium python API 总结

    Appium python api 根据testerhome的文章,再补充一些文章里面没有提及的API [TOC] [1]find element driver 的方法 注意:这几个方法只能通过sel ...

随机推荐

  1. PHP:class static

    简介 static关键词的一种常见用途是,当类的某个变量$var被定义为static时,那么$var就是类的变量. 这意味着:1,该类的任意一个实例对其进行修改,在该类的其它实例中访问到的是修改后的变 ...

  2. Spring.NET 中的 ADO.NET 数据访问的示例

    Spring.NET 1.3.1 中提供了一个使用 AdoTemplate 的完整示例,包括使用泛型和使用非泛型技术进行数据访问,这个示例位于下载的压缩包中\Spring.NET-1.3.1\Spri ...

  3. RichTextEditor 文本编辑

    <?xml version="1.0" encoding="utf-8"?> <s:Application xmlns:fx="ht ...

  4. Inno Setup入门(九)——修改安装过程中的文字显示

    前面说到过可以使用不用的语言文件实现不同的显示方式,方便与国际接轨,事实上即使没有语言文件也可以实现修改.[Messages]段用于定义安装程序和卸载程序中显示的消息.一般不需要创建 [Message ...

  5. sql server 的约束的作用 于 理解 [转]

    SQL Server中的约束用来确保系统的完整性.一般约束可以分为:主键约束外键约束检查约束默认约束唯一约束非空约束 但是一般我们需要特别注意前三种约束:主键约束,一就是说跟你系统的实体有很大的关系, ...

  6. PE文件格式详解(下)

    作者:MSDN译者:李马 预定义段 一个Windows NT的应用程序典型地拥有9个预定义段,它们是.text..bss..rdata..data..rsrc..edata..idata..pdata ...

  7. eclipse 终极操作技巧

    eclipse作为一个java开发必备软件,从用户体验来说,还是蛮一般的(按照初始设置的话),所以有必要进行一些设置上的改良,加上对一些好用的快捷键的挖掘,能让你用eclipse更加得心应手,事半功倍 ...

  8. HDU 2018 undefined

    题目思路:完全背包,dp[i][j]代表,砍j只怪,用i点疲劳最多能获得的经验值. 和平常的完全背包不一样的是多了一个限制条件:最多只砍S只怪,所以我们应该多一重循环来q:for 1->S,代表 ...

  9. 【使用Itext处理PDF文档(新建PDF文件、修改PDF文件、PDF中插入图片、将PDF文件转换为图片)】

    iText简介 iText是著名的开放源码的站点sourceforge一个项目,是用于生成PDF文档的一个java类库.通过iText不仅可以生成PDF或rtf的文档,而且可以将XML.Html文件转 ...

  10. ice grid 第一篇

    关键点: (1)如果想提高并发的话,还是在一个node上对于同一个application开多个server instance. 1.名词解释 .Replica groups A replica gro ...