Optimal Milking

题目:

有K个机器。C仅仅牛。要求求出最全部牛到各个产奶机的最短距离。给出一个C+K的矩阵,表示各种标号间的距离。

而每一个地方最多有M仅仅牛。

算法分析:

二分+最短路+网络流

想法难以想到。我是看解题报告的思路。

然后。自己上了手。開始wrong 了3次。后来各种该。无意的一个更改就AC了。无语勒。

。。。

wrong 在了,网络流建图的时候仅仅能是机器和奶牛之间的距离关系。而奶牛跟奶牛或者机器跟机器不要建边。当时脑残了。!。!

#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std; const int INF = 1 << 20;
const int MAXN = 1000; struct Edge{
int from,to,cap,flow,cost;
Edge(){};
Edge(int _from,int _to,int _cap,int _flow)
:from(_from),to(_to),cap(_cap),flow(_flow){};
};
vector<Edge> edges;
vector<int> G[MAXN];
int cur[MAXN],d[MAXN];
bool vst[MAXN];
int src,sink;
int dist[MAXN][MAXN];
int K,C,M,V; void init(){
src = V + 1; sink = src + 1;
for(int i = 0;i <= sink;++i)
G[i].clear();
edges.clear();
} void flody(){
for(int k = 0;k < V;++k)
for(int i = 0;i < V;++i)
for(int j = 0;j < V;++j)
if(dist[i][j] > dist[i][k] + dist[k][j])
dist[i][j] = dist[i][k] + dist[k][j];
// for(int i = 0;i < V;++i){
// for(int j = 0;j < V;++j)
// printf("%d ",dist[i][j]);
// puts("");
// }
} void addEdge(int from,int to,int cap){
edges.push_back(Edge(from,to,cap,0));
edges.push_back(Edge(to,from,0,0));
int sz = edges.size();
G[from].push_back(sz - 2);
G[to].push_back(sz - 1);
} void build(int limit){
init(); for(int i = K;i < V;++i){ // 奶牛与源点
addEdge(src,i,1);
} for(int i = 0;i < K;++i){ //机器与汇点
addEdge(i,sink,M);
} //注意---> i = K!!! j < K!!!!
for(int i = K;i < V;++i){ //奶牛与机器的连接
for(int j = 0;j < K;++j){
if(dist[i][j] <= limit){
addEdge(i,j,1);
}
}
} } bool BFS(){
memset(vst,0,sizeof(vst));
queue<int> Q;
Q.push(src);
d[src] = 0;
vst[src] = 1; while(!Q.empty()){
int x = Q.front(); Q.pop();
for(int i = 0;i < (int)G[x].size();++i){
Edge& e = edges[G[x][i]];
if(!vst[e.to] && e.cap > e.flow){
vst[e.to] = 1;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
} return vst[sink];
} int DFS(int x,int a){
if(x == sink||a == 0)
return a; int flow = 0,f;
for(int& i = cur[x];i < (int)G[x].size();++i){
Edge& e = edges[G[x][i]];
if(d[e.to] == d[x] + 1&&(f = DFS(e.to,min(a,e.cap - e.flow))) > 0){
e.flow += f;
edges[G[x][i]^1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
return flow;
} int maxFlow(){
int flow = 0;
while(BFS()){
memset(cur,0,sizeof(cur));
flow += DFS(src,INF);
}
return flow;
} bool Check(int mid){
build(mid);
int flow = maxFlow(); //cout << "flow : " << flow << endl; return flow == C;
} void solve(){
flody(); int lb = -1,ub = INF + 100;
while(ub - lb > 1){
int mid = (lb + ub) / 2;
if(Check(mid))
ub = mid;
else
lb = mid; //cout << "mid: " << mid << " lb: " << lb << " ub: " << ub << endl;
} printf("%d\n",ub);
} int main()
{
// freopen("Input.txt","r",stdin); while(~scanf("%d%d%d",&K,&C,&M)){
V = K + C;
int x;
for(int i = 0;i < V;++i){
for(int j = 0;j < V;++j){
scanf("%d",&x);
dist[i][j] = (x == 0 ? INF : x);
}
dist[i][i] = 0;
} solve();
}
return 0;
}

另一种是多个匹配,。没有写。成品填充。

版权声明:本文博主原创文章,博客,未经同意不得转载。

poj Optimal Milking的更多相关文章

  1. POJ 2112 Optimal Milking (二分+最短路径+网络流)

    POJ  2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K To ...

  2. POJ 2112 Optimal Milking (二分 + floyd + 网络流)

    POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...

  3. POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】

    Optimal Milking Time Limit:2000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Sub ...

  4. Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)

    题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...

  5. Optimal Milking 分类: 图论 POJ 最短路 查找 2015-08-10 10:38 3人阅读 评论(0) 收藏

    Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 13968 Accepted: 5044 Case ...

  6. POJ 2112 Optimal Milking (Dinic + Floyd + 二分)

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 19456   Accepted: 6947 ...

  7. Optimal Milking POJ - 2112 (多重最优匹配+最小费用最大流+最大值最小化 + Floyd)

      Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 19347   Accepted: 690 ...

  8. POJ2112 Optimal Milking (网络流)(Dinic)

                                             Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K T ...

  9. 题解 最优的挤奶方案(Optimal Milking)

    最优的挤奶方案(Optimal Milking) 时间限制: 1 Sec  内存限制: 128 MB 题目描述 农场主 John 将他的 K(1≤K≤30)个挤奶器运到牧场,在那里有 C(1≤C≤20 ...

随机推荐

  1. 内核空间和用户空间的分界 PAGE_OFFSET

      PAGE_OFFSET 首先看看PAGE_OFFSET的功能   内存映射 |            用户空间                  |   内核空间   | |——————+———— ...

  2. win 7 设置防火墙例外的端口号, 让其域网中可以访问

    背景,发布 一个tomcat下的website, 而发局域网可以访问. 这时,可以关闭防火墙:或者开启防火墙,并设置一个防火墙的入站规则,让身边的同事访问这个website. 设置方法:win 7 - ...

  3. uva 1415 - Gauss Prime(高斯素数)

    题目链接:uva 1415 - Gauss Prime 题目大意:给出一个a,b,表示高斯数a+bi(i=−2‾‾‾√,推断该数是否为高斯素数. 解题思路: a = 0 时.肯定不是高斯素数 a != ...

  4. Delphi使用StrToDatetime在不同操作系统出现不同的情况(控制面板的时间格式都记录在注册表里,因此也可修改注册表)

    Str:=  '2010-4-13  06:22:22'; StrToDateTime(Str); 现象:在WinXP, Win2003 都不会报错 但是在Windows7,Windows Serve ...

  5. jquery clone方法

    引用自http://www.w3school.com.cn/tiy/t.asp?f=jquery_manipulation_clone <html> <head> <sc ...

  6. 如何获取ul 中li选中的值点击button按钮跳转链接

    <ul id="parent"> <li></li> <li></li> <li></li> & ...

  7. ubuntu12 环境下编译freerdp

    有时候需要从linux环境下远程连接到windows的环境,可以采用freerdp.freerdp是一个linux下开源的工具,在Ubuntu下可以直接用 apt-get install freerd ...

  8. Mybatis+Struts2的结合:实现用户插入和查找

    总结一下今天一个成功的小实验:Mybatis+Struts2的结合:实现用户插入和查找.删除和修改如果以后写了,会继续更新. 一 准备工作. 1.新建一个java web项目. 2.在webConte ...

  9. 《转》Python多线程学习

    原地址:http://www.cnblogs.com/tqsummer/archive/2011/01/25/1944771.html 一.Python中的线程使用: Python中使用线程有两种方式 ...

  10. QTableView 固定列宽度(鼠标拖动后,仍可固定)

    QTableView 提供一个函数: void QTableView::setColumnWidth ( int column, int width ) 用于设置column指定的列的宽度 但setC ...