Quasi-Newton Method--LBFGS
Quasi-Newton Method
Quasi-Newton Method每一步计算过程中仅涉及到函数值和函数梯度值计算,这样有效避免了Newton Method中涉及到的Hessian矩阵计算问题。于Newton Method不同的是Quasi-Newton Method在每点处构建一个如下的近似模型:

从上面的近似模型我们可以看出,该模型用B_k代替了Newton Method中近似模型中涉及到的Hessian矩阵。因此Quasi-Newton Method中方向计算公式如下所示:
(24)
这里有必要解释一下用于近似Hessian矩阵的B_k可行性,及一个指导性方案。根据Taylor(泰勒)级数可知如下公式:

由于函数▽f(.)连续,因此上式可以表示为:

(25)
因此每一选择Hessian矩阵的近似B_ k+1时,可以像式(24)那样模仿真实的Hessian矩阵的性质。得到下式:
(26)
其中:
s_k = x_k+1 – x_k y_k = ▽f(x_k+1) – ▽f(x_k) (27)
同时要求B_k+1为对称正定矩阵。
BFGS Method
从Quasi-Newton Method方向公式 (24) 中,可以看到每一步计算方向的过程中均涉及到B_k+1矩阵求逆的问题,为了避免该计算,通过分析公式(26)可知,我们可以构建一个近似H_k+1,该近视满足如下方程:
H_k+1*y_k = s_k (28)
同时要求H_k+1为对称正定矩阵。因此BFGS Method中,每个点处的方向由如下公式计算:
p_k = –H_k*▽f(x_k) (29)
在此基础上,BFGS方向迭代公式如下所示:

(30)
其中ρ_k为一个标量:

有了上面(30)的H_k迭代公式后,还有一个问题就是初始的H_0如何计算,目前常用的方法是初始的H_0直接设为单位矩阵I。因此BFGS Method用于解无约束最优化的过程可以表示为如下过程:

LBFGS Method
上一节所介绍的BFGS Method比较适合解决中小规模无约束最优化问题,但是BFGS算法产生的Hessian近似矩阵H_k为n * n的,同时该矩阵非稀疏,因此当n的规模较大时将面临两个问题:
1) 存储问题:n规模较大时,n*n矩阵对内存的消耗将较大;
2) 计算问题:n规模较大,同时n*n矩阵非稀疏时,计算复杂度将较高;
为了解决以上问题,引申出了Limited-Memory Quasi-Newton Method,目前使用较多的LBFGS算法即属于该类算法。为了减少H_k矩阵的存储,LBFGS算法利用最近几代的curvature 信息来构建Hessian矩阵的近似。由BFGS Method我们知道:
x_k+1 = x_k + a_k * H_k*▽f(x_k)
其中a_k为步长,H_k为Hessian矩阵的近似,可以通过如下迭代公式计算:
H_k+1 = V_k* H_k*V_k+ρ_k * s_k* s_k (31)
其中:

从上面的H_k的迭代计算公式可知,H_k会慢慢由稀疏矩阵转变为稠密矩阵,因此存储该矩阵以及进行该矩阵和向量的相乘运算的消耗将较大。为了避免该问题,LBFGS算法在BFGS算法的基础上从两点进行了改进:
1)估算每一步对应的Hessian近似矩阵时,给出一个当前步的初始Hessian矩阵估计H_k0
2) 利用过去当前代及过去m-1代的curvature信息修正初始Hessian矩阵估计H_k0,得到最终的Hessian矩阵近似估计H_k。
计算式如下所示:

(32)
上述计算式(32),可以通过公式(31)递归计算获取。公式(32)可以用以下算法表示:

从上面计算H_k的公式(32)可知,要估算每个点x_k处的Hessian矩阵近似,需要给出初始估计H_k0,H_k0一般通过以下公式计算:

有了上面的方向计算算法后,LBFGS算法用于解无约束最优化问题,可以表示为如下算法:
1 选择一个初始点x_0,并选择收敛判断条件 ε> 0,以及常量m(代表过去代数)一般为6
2 k left 0 H_0 left I,因此r = H_0 *▽f(x_0) =▽f(x_0)
3 while ||▽f(x_k)|| > ε
4 计算从当前点x_k走到下一个点x_k+1的方向
p_k = –r
5 采用line search策略计算步长a_k
6 x_k+1 = x_k + a_k * p_k
7 if k > m
删除LBFGS计算H_k时用不上的向量对(s_k-m, y_k-m)
8 计算并保存 s_k = x_k+1 – x_k y_k = ▽f(x_k+1) – ▽f(x_k)
9 采用LBFGS Hessian矩阵近似算法计算 r
10 k left k+1
4.算法总结
用于解无约束优化算法的Quasi-Newton Method中的LBFGS算法到这里总算初步介绍完了,不过这里笔者要承认的是这篇文档省略了许多内容,包括算法收敛性的证明以及收敛速度证明等许多内容。因此读者若希望对这一块有一个更深入的认识可以参考以下两本书:
1) Numerical Methods for Unconstrained Optimization and Nonlinear Equations(J.E. Dennis Jr. Robert B. Schnabel)
2) Numerical Optimization(Jorge Nocedal Stephen J. Wright)
Quasi-Newton Method--LBFGS的更多相关文章
- Apply Newton Method to Find Extrema in OPEN CASCADE
Apply Newton Method to Find Extrema in OPEN CASCADE eryar@163.com Abstract. In calculus, Newton’s me ...
- matlab Newton method
% Matlab script to illustrate Newton's method % to solve a nonlinear equation % this particular scri ...
- Newton法(牛顿法 Newton Method)
1.牛顿法应用范围 牛顿法主要有两个应用方向:1.目标函数最优化求解.例:已知 f(x)的表达形式,,求 ,及g(x)取最小值时 ...
- Newton‘ method 的优缺点
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdTAxMzE1Mjg5NQ==/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...
- AI人工智能专业词汇集
作为最早关注人工智能技术的媒体,机器之心在编译国外技术博客.论文.专家观点等内容上已经积累了超过两年多的经验.期间,从无到有,机器之心的编译团队一直在积累专业词汇.虽然有很多的文章因为专业性我们没能尽 ...
- 最优化算法:BFGS算法全称和L-BFGS算法全称
在最优化算法研究中按时间先后顺序出现了许多算法包括如下几种,这里介绍下他们的全称和英文名称: 1.最速下降法(Gradient descent) 2.牛顿法(Newton method) 3. 共轭梯 ...
- L-BFGS
L-BFGS算法比较适合在大规模的数值计算中,具备牛顿法收敛速度快的特点,但不需要牛顿法那样存储Hesse矩阵,因此节省了大量的空间以及计算资源.本文主要通过对于无约束最优化问题的一些常用算法总结,一 ...
- L-BFGS算法介绍
可以看出,拟牛顿法每次迭代只需要根据前次迭代的即可以计算出,不需要求出Hesse矩阵的逆. 2.4 L-BFGS(limited-memory BFGS) BFGS算法中每次迭代计算需要前次迭代得到的 ...
- Alink漫谈(十一) :线性回归 之 L-BFGS优化
Alink漫谈(十一) :线性回归 之 L-BFGS优化 目录 Alink漫谈(十一) :线性回归 之 L-BFGS优化 0x00 摘要 0x01 回顾 1.1 优化基本思路 1.2 各类优化方法 0 ...
- jrae源码解析(一)
jare用java实现了论文<Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions>中 ...
随机推荐
- 手动配置S2SH三大框架报错(二)
十二月 08, 2013 9:34:39 下午 org.apache.catalina.core.AprLifecycleListener init 严重: An incompatible versi ...
- Delphi与Vista提供的UAC控制(1-代表资源编号,24-资源类型为RTMAINIFEST,最后用brcc32编译成资源文件)
Vista提供的UAC机制,是Vista的新增功能之一.它的主要目的是防止对于操作系统本身的恶意修 改.如果想对于Vista的 系统设置进行改动,必须通过UAC的验 证才能够进行.通过这样的手段,大大 ...
- mysql iot 主键自增列问题
mysql 如何避免热点块? 主键按sn自增列 Oracle 可以通过翻转索引 比如 插入101 102 103 104 变成101 201 301 401 分散数据 反转索引坏处,无法index r ...
- 在toolbar里动态创建多个button(ext.net)
private void setOneMenu() { string sql = "select id,name,gids from Config where name<>'高级 ...
- [Java][Android][Process] ProcessBuilder与Runtime差别
在Android中想要进行Ping,在不Root机器的情况下似乎还仅仅能进行底层命调用才干实现. 由于在Java中要进行ICMP包发送须要Root权限. 于是仅仅能通过创建进程来攻克了.创建进程在Ja ...
- ASP.NET常被忽视的一些细节
原文:ASP.NET常被忽视的一些细节 前段时间碰到一个问题:为什么在ASP.NET程序中定时器有时候会不工作? 这个问题看起来很奇怪,代码好像也没错,但就是结果与预期不一致. 其实这里是ASP.NE ...
- moodle中文API之表单API
Form API 表单API 文件夹 1.概述 2.亮点 3.使用方法 4.表单元素 4.1 基本表单元素 4.2 定制表单元素 5.经常使用函数 5.1 add_action_buttons($c ...
- Xamarin 安装教程 支持Visual Studio 2013
本文的前提是你已经正确的安装了VS 2013. 本文的全部步骤在Win7 Ultimate 64系统上測试通过.支持VS 2013,我用的版本号是VS 2013 update2. 安装 1. ...
- table显示边框问题,隐藏行线,列线
只显示上边框 <table frame=above> 只显示下边框 <table frame=below> 只显示左.右边框 <table frame=vsides> ...
- Redis slowlog
和mongo的slowlog一样,redis中对于操作时间较长(默认为10秒)的命令也会记录下来,不过它将它们保存在redisServer结构中的slowlog这个链表中,新进来的log排在链表头部, ...