Quasi-Newton Method
Quasi-Newton Method每一步计算过程中仅涉及到函数值和函数梯度值计算,这样有效避免了Newton Method中涉及到的Hessian矩阵计算问题。于Newton Method不同的是Quasi-Newton Method在每点处构建一个如下的近似模型:

从上面的近似模型我们可以看出,该模型用B_k代替了Newton Method中近似模型中涉及到的Hessian矩阵。因此Quasi-Newton Method中方向计算公式如下所示:
(24)
这里有必要解释一下用于近似Hessian矩阵的B_k可行性,及一个指导性方案。根据Taylor(泰勒)级数可知如下公式:

由于函数▽f(.)连续,因此上式可以表示为:

(25)
因此每一选择Hessian矩阵的近似B_ k+1时,可以像式(24)那样模仿真实的Hessian矩阵的性质。得到下式:
(26)
其中:

s_k = x_k+1 – x_k y_k = ▽f(x_k+1) – ▽f(x_k) (27)

同时要求B_k+1为对称正定矩阵。

BFGS Method

从Quasi-Newton Method方向公式 (24) 中,可以看到每一步计算方向的过程中均涉及到B_k+1矩阵求逆的问题,为了避免该计算,通过分析公式(26)可知,我们可以构建一个近似H_k+1,该近视满足如下方程:

H_k+1*y_k = s_k (28)

同时要求H_k+1为对称正定矩阵。因此BFGS Method中,每个点处的方向由如下公式计算:

p_k = –H_k*▽f(x_k) (29)

在此基础上,BFGS方向迭代公式如下所示:

(30)
其中ρ_k为一个标量:

有了上面(30)的H_k迭代公式后,还有一个问题就是初始的H_0如何计算,目前常用的方法是初始的H_0直接设为单位矩阵I。因此BFGS Method用于解无约束最优化的过程可以表示为如下过程:

LBFGS Method
上一节所介绍的BFGS Method比较适合解决中小规模无约束最优化问题,但是BFGS算法产生的Hessian近似矩阵H_k为n * n的,同时该矩阵非稀疏,因此当n的规模较大时将面临两个问题:
1) 存储问题:n规模较大时,n*n矩阵对内存的消耗将较大;
2) 计算问题:n规模较大,同时n*n矩阵非稀疏时,计算复杂度将较高;
为了解决以上问题,引申出了Limited-Memory Quasi-Newton Method,目前使用较多的LBFGS算法即属于该类算法。为了减少H_k矩阵的存储,LBFGS算法利用最近几代的curvature 信息来构建Hessian矩阵的近似。由BFGS Method我们知道:

x_k+1 = x_k + a_k * H_k*▽f(x_k)

其中a_k为步长,H_k为Hessian矩阵的近似,可以通过如下迭代公式计算:

H_k+1 = V_k* H_k*V_k+ρ_k * s_k* s_k (31)

其中:

从上面的H_k的迭代计算公式可知,H_k会慢慢由稀疏矩阵转变为稠密矩阵,因此存储该矩阵以及进行该矩阵和向量的相乘运算的消耗将较大。为了避免该问题,LBFGS算法在BFGS算法的基础上从两点进行了改进:
1)估算每一步对应的Hessian近似矩阵时,给出一个当前步的初始Hessian矩阵估计H_k0
2) 利用过去当前代及过去m-1代的curvature信息修正初始Hessian矩阵估计H_k0,得到最终的Hessian矩阵近似估计H_k。
计算式如下所示:

(32)
上述计算式(32),可以通过公式(31)递归计算获取。公式(32)可以用以下算法表示:

从上面计算H_k的公式(32)可知,要估算每个点x_k处的Hessian矩阵近似,需要给出初始估计H_k0,H_k0一般通过以下公式计算:

有了上面的方向计算算法后,LBFGS算法用于解无约束最优化问题,可以表示为如下算法:

1 选择一个初始点x_0,并选择收敛判断条件 ε> 0,以及常量m(代表过去代数)一般为6
2 k left 0 H_0 left I,因此r = H_0 *▽f(x_0) =▽f(x_0)
3 while ||▽f(x_k)|| > ε
4 计算从当前点x_k走到下一个点x_k+1的方向
p_k = –r
5 采用line search策略计算步长a_k
6 x_k+1 = x_k + a_k * p_k
7 if k > m
删除LBFGS计算H_k时用不上的向量对(s_k-m, y_k-m)
8 计算并保存 s_k = x_k+1 – x_k y_k = ▽f(x_k+1) – ▽f(x_k)
9 采用LBFGS Hessian矩阵近似算法计算 r
10 k left k+1

4.算法总结
用于解无约束优化算法的Quasi-Newton Method中的LBFGS算法到这里总算初步介绍完了,不过这里笔者要承认的是这篇文档省略了许多内容,包括算法收敛性的证明以及收敛速度证明等许多内容。因此读者若希望对这一块有一个更深入的认识可以参考以下两本书:
1) Numerical Methods for Unconstrained Optimization and Nonlinear Equations(J.E. Dennis Jr. Robert B. Schnabel)
2) Numerical Optimization(Jorge Nocedal Stephen J. Wright)

Quasi-Newton Method--LBFGS的更多相关文章

  1. Apply Newton Method to Find Extrema in OPEN CASCADE

    Apply Newton Method to Find Extrema in OPEN CASCADE eryar@163.com Abstract. In calculus, Newton’s me ...

  2. matlab Newton method

    % Matlab script to illustrate Newton's method % to solve a nonlinear equation % this particular scri ...

  3. Newton法(牛顿法 Newton Method)

               1.牛顿法应用范围                          牛顿法主要有两个应用方向:1.目标函数最优化求解.例:已知 f(x)的表达形式,,求 ,及g(x)取最小值时 ...

  4. Newton‘ method 的优缺点

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdTAxMzE1Mjg5NQ==/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...

  5. AI人工智能专业词汇集

    作为最早关注人工智能技术的媒体,机器之心在编译国外技术博客.论文.专家观点等内容上已经积累了超过两年多的经验.期间,从无到有,机器之心的编译团队一直在积累专业词汇.虽然有很多的文章因为专业性我们没能尽 ...

  6. 最优化算法:BFGS算法全称和L-BFGS算法全称

    在最优化算法研究中按时间先后顺序出现了许多算法包括如下几种,这里介绍下他们的全称和英文名称: 1.最速下降法(Gradient descent) 2.牛顿法(Newton method) 3. 共轭梯 ...

  7. L-BFGS

    L-BFGS算法比较适合在大规模的数值计算中,具备牛顿法收敛速度快的特点,但不需要牛顿法那样存储Hesse矩阵,因此节省了大量的空间以及计算资源.本文主要通过对于无约束最优化问题的一些常用算法总结,一 ...

  8. L-BFGS算法介绍

    可以看出,拟牛顿法每次迭代只需要根据前次迭代的即可以计算出,不需要求出Hesse矩阵的逆. 2.4 L-BFGS(limited-memory BFGS) BFGS算法中每次迭代计算需要前次迭代得到的 ...

  9. Alink漫谈(十一) :线性回归 之 L-BFGS优化

    Alink漫谈(十一) :线性回归 之 L-BFGS优化 目录 Alink漫谈(十一) :线性回归 之 L-BFGS优化 0x00 摘要 0x01 回顾 1.1 优化基本思路 1.2 各类优化方法 0 ...

  10. jrae源码解析(一)

    jare用java实现了论文<Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions>中 ...

随机推荐

  1. Linux红黑树(二)——访问节点

    核心对红黑树使用两点说明 1.头文件 <Documentation/rbtree.txt> Linux's rbtree implementation lives in the file ...

  2. Visual Studio Code中文文档

    Visual Studio Code中文文档 Visual Studio Code是一个轻量级但是十分强大的源代码编辑器,重要的是它在Windows, OS X 和Linux操作系统的桌面上均可运行. ...

  3. MySQL 执行计划里的rows

    <pre name="code" class="html">SQL> alter session set statistics_level=a ...

  4. memory引擎的索引失效一例

    memory引擎的索引失效一例 memory引擎的索引失效一例

  5. uva 357 Let Me Count The Ways(01背包)

    题目连接:357 - Let Me Count The Ways 题目大意:有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值. 解题思路:和uva674是一 ...

  6. [Java 8] (6) Lambda与资源管理

    资源处理 Java本身自带了垃圾回收(Garbage Collection)功能.可是仅仅有垃圾回收的目标是内部资源(Internal Resource),典型的比方堆上分配的内存区域等.对于外部资源 ...

  7. Swift - 协议(protocol)

    1,Swift中协议类似于别的语言里的接口,协议里只做方法的声明,包括方法名.返回值.参数等信息,而没有具体的方法实现. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...

  8. git flow 的使用

     在这里主要讲一下我在项目中用到的关于gitflow的使用方法.   公司的项目中,专门有一台用来存放版本号库的server,路径是在默认的安装文件夹/opt/git/,那么在使用的时候,假设你是 ...

  9. hdu 3488 Tour

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3488 题意:给你一个N个顶点M条边的带权有向图,要你把该图分成1个或多个不相交的有向环.且所有定点都只 ...

  10. TStack,TQueue,TObjectList,TObjectStack等等

    TStack,TQueue,TObjectList,TObjectStack等等,都在Contnrs.pas单元里,需要手动添加. 不同于TList类,TObjectList对象将销毁任何从列表中删除 ...