struct TreeNode{

int val;

TreeNode* left;

TreeNode* right;

TreeNode(int val):val(val),left(NULL),right(NULL){}

};

Not all binary trees are binary search trees.

4.1 Implement a function to check if a tree is balanced. For the purposes of this question, a balanced tree is defined to be a tree such that no two leaf nodes differ in distance from the root by more than one.

Calculate all node's two leaf by recursion, in each recursion, judge its two leaf nodes differ is more than one or not. -1 represents no balanced, and >=0 represents balanced.

int depthAndCheck(TreeNode *root){

if(root==NULL)return 0;

else{

int leftD = depthAndCheck(root->left);

int rightD = depthAndCheck(root->right);

if(leftD==-1||rightD==-1)return -1; //find one node no balanced,then the tree is no balanced.

if(leftD-rightD<=-2||leftD-rightD>=2)return -1; //judge its two children.

return max(leftD,rightD)+1;

}

}

4.2 Given a directed graph, design an algorithm to find out whether there is a route between two nodes.

struct GraphNode{

int val; //value

vector<GraphNode*> next; //directed to nodes

};

Here, two nodes are A and B, we breadth first search the graph at the beginning of A to see whether there is a route from A to B, then breadth first search at the beginning of B to see whether there is a route from B to
A. We declare a set<GraphNode*> to record whether the Node is visited.

bool isHaveRoute(GraphNode *A,GraphNode *B){

if(A==B)return true;

set<GraphNode*>  visited;

list<GraphNode*>  array[2];

int cur=0,pre=1;

array[0].push(A);visited.insert(A);

while(!array[cur].empty()){

cur=!cur;pre=!pre;

array[cur].clear();

while(!array[pre].empty()){

for(int i=0;i<array[pre].front()->next.size();i++){

if(visited.count(array[pre].front()->next[i])==0){

if(array[pre].front()->next[i]==B)return true;

array[cur].push(array[pre].front()->next[i]);

visited.insert(array[pre].front()->next[i]);

}

}

array[pre].pop_front();

}

}

return false;

}

bool isHaveRouteAB(GraphNode *A,GraphNode *B){

if(isHaveRoute(A,B)||isHaveRoute(B,A))return true;

else return false;

}

4.3 Given a sorted (increasing order) array, write an algorithm to create a binary tree with minimal height.

I think the problem is to create a binary search tree with minimal height.

The left child is smaller than the parent and the right child is bigger than the parent. So, we can find the middle of the array, and divide this array to two part, the left part is the left child part of the middle and
the right part is the right child part.

TreeNode* binaryST(int a[],int left,int right){

if(left>right)return NULL;

int mid=left+(right-left)/2;

TreeNode *parent = new TreeNode(a[mid]);

parent->left = binaryST(a,left,mid-1);

parent->right = binaryST(a,mid+1,right);

return parent;

}

TreeNode *resBST(int a[],int n){

if(n<=0)return NULL;

return binaryST(a,0,n-1);

}

4.4 Given a binary search tree, design an algorithm which creates a linked list of all the nodes at each depth (i e , if you have a tree with depth D, you’ll have D linked lists).

BFS,like 4.2.

4.5 Write an algorithm to find the ‘next’ node (i e , in-order successor) of a given node in a binary search tree where each node has a link to its parent.

in-order, first, read the node's left, then the node, the the node's right.

When the node has right child, the successor will be the left-most child of it's right child part.

When the node is a left child,its parent is its successor.

When the node is a right child, traverse its parents until we find a parent that the node is in the left child part of this parent. This parent is the node's successor.

TreeNode* findNextNode(TreeNode* root){

if(root!=NULL)

if(root->parent==NULL||root->right!=NULL){

return findLeftMostChild(root->right);

}else{

while(root->parent){

if(root->parent->left==root)break;

root=root->parent;

}

return root->parent;

}

}

return NULL;

}

TreeNode* findLeftMostChild(TreeNode* root){

if(root==NULL)return NULL;

if(root->left)root=root->left;

return root;

}

4.6 Design an algorithm and write code to find the first common ancestor of two nodes in a binary tree.Avoid storing additional nodes in a data structure NOTE: This is not necessarily a binary search tree.

4.7 You have two very large binary trees: T1, with millions of nodes, and T2, with hundreds of nodes Create an algorithm to decide if T2 is a subtree of T1.

we traverse T1 to find a node that equal to T2's root, then compare T1 and T2 to find whether T2 is a subtree of T1.

bool isSubTree(TreeNode* T1,TreeNode* T2){

if(T2==NULL)return true;

if(T1==NULL)return false;

if(T1->val==T2->val){

if(isMatch(T1,T2))return true;

}

return isSubTree(T1->left,T2)||isSubTree(T1->right,T2);

}

bool isMatch(TreeNode* T1,TreeNode *T2){

if(T1==NULL&&T2==NULL)return true;

if(T1==NULL||T2==NULL)return false;

if(T1->val!=T2->val)return false;

return isMatch(T1->left,T2->left)&&isMatch(T1->right,T2->right);

}

4.8 You are given a binary tree in which each node contains a value. Design an algorithm to print all paths which sum up to that value. Note that it can be any path in the tree - it does not have to start at the root.

we declare a vector<int> to store one path from root to current node, and traverse this vector to find a path that sum up to the value.

void traverseAllPaths(TreeNode* root,int num,vector<int> buffer,int level){

if(root==NULL)return;

buffer.push_back(root->val);

int temp=num;

for(int i=level;i>=0;i--){

temp-=buffer[i];

if(temp==0)printfPath(buffer,i,level);

}

vector<int> bufferL,bufferR;

for(int i=0;i<buffer.size();i++){

bufferL.push_back(buffer[i]);

bufferR.push_back(buffer[i]);

}

traverseAllPaths(root->left,num,bufferL,level+1);

traverseAllPaths(root->right,num,bufferR,level+1);

}

void printfPath(vector<int> buffer,int begin,int end){

for(int i=begin;i<=end;i++)printf("%d ",buffer[i]);

printf("\n");

}

CareerCup Chapter 4 Trees and Graphs的更多相关文章

  1. Cracking the Coding Interview(Trees and Graphs)

    Cracking the Coding Interview(Trees and Graphs) 树和图的训练平时相对很少,还是要加强训练一些树和图的基础算法.自己对树节点的设计应该不是很合理,多多少少 ...

  2. 【CareerCup】Trees and Graphs—Q4.3

    转载请注明出处:http://blog.csdn.net/ns_code/article/details/24744177     题目: Given a sorted (increasing ord ...

  3. Chp4: Trees and Graphs

    1.Type of Tree 1. Binary Tree: a binary tree is a tree in which each node has at most two child node ...

  4. Careercup | Chapter 1

    1.1 Implement an algorithm to determine if a string has all unique characters. What if you cannot us ...

  5. Careercup | Chapter 4

    二叉查换树,左孩子小于等于根,右孩子大于根. 完全二叉树,除最后一层外,每一层上的节点数均达到最大值:在最后一层上只缺少右边的若干结点. complete binary tree 满二叉树,完美二叉树 ...

  6. Careercup | Chapter 3

    3.1 Describe how you could use a single array to implement three stacks. Flexible Divisions的方案,当某个栈满 ...

  7. Careercup | Chapter 2

    链表的题里面,快慢指针.双指针用得很多. 2.1 Write code to remove duplicates from an unsorted linked list.FOLLOW UPHow w ...

  8. Careercup | Chapter 8

    8.2 Imagine you have a call center with three levels of employees: respondent, manager, and director ...

  9. Careercup | Chapter 7

    7.4 Write methods to implement the multiply, subtract, and divide operations for integers. Use only ...

随机推荐

  1. 如何高效地向Redis插入大量的数据(转)

    最近有个哥们在群里问,有一个日志,里面存的是IP地址(一行一个),如何将这些IP快速导入到Redis中. 我刚开始的建议是Shell+redis客户端. 今天,查看Redis官档,发现文档的首页部分( ...

  2. Android 动态生成布局 (多层嵌套)

    Android 除了能够载入xml文件,显示布局外,也能够代码生成布局,并通过setContentView(View view)方法显示布局.单独的一层布局,如一个主布局加一个控件(如Button\i ...

  3. poj 2038 Team Rankings 枚举排列

    //poj 2038 //sep9 #include <iostream> #include <algorithm> using namespace std; char s[1 ...

  4. [置顶] ※数据结构※→☆线性表结构(stack)☆============栈 序列表结构(stack sequence)(六)

    栈(stack)在计算机科学中是限定仅在表尾进行插入或删除操作的线性表.栈是一种数据结构,它按照后进先出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据.栈 ...

  5. swift-switch使用方法

    // Playground - noun: a place where people can play import UIKit //--------------------------------- ...

  6. poj 3265 Problem Solving dp

    这个题目容易让人误以为是贪心就可以解决了,但是细想一下很容易举出反例. dp[i][j]表示解决了i个问题,最后一个月解决的问题数目. #include <iostream> #inclu ...

  7. H264相关随笔

    DR(Instantaneous Decoding Refresh)--即时解码刷新. I和IDR帧都是使用帧内预测的.它们都是同一个东西而已,在编码和解码中为了方便,要首个I帧和其他I帧区别开,所以 ...

  8. 消息队列(Message Queue)基本概念(转)

    背景 之前做日志收集模块时,用到flume.另外也有的方案,集成kafaka来提升系统可扩展性,其中涉及到消息队列当时自己并不清楚为什么要使用消息队列.而在我自己提出的原始日志采集方案中不适用消息队列 ...

  9. Android该HTTP下载

    今天学习了Android开发中比較难的一个环节,就是断点续传下载,非常多人看到这个标题就感觉头大.的确,假设没有良好的逻辑思维,这块的确非常难搞明确.以下我就将自己学到的知识和一些见解写下供那些在这个 ...

  10. [欧拉回路] hdu 3018 Ant Trip

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3018 Ant Trip Time Limit: 2000/1000 MS (Java/Others) ...