struct TreeNode{

int val;

TreeNode* left;

TreeNode* right;

TreeNode(int val):val(val),left(NULL),right(NULL){}

};

Not all binary trees are binary search trees.

4.1 Implement a function to check if a tree is balanced. For the purposes of this question, a balanced tree is defined to be a tree such that no two leaf nodes differ in distance from the root by more than one.

Calculate all node's two leaf by recursion, in each recursion, judge its two leaf nodes differ is more than one or not. -1 represents no balanced, and >=0 represents balanced.

int depthAndCheck(TreeNode *root){

if(root==NULL)return 0;

else{

int leftD = depthAndCheck(root->left);

int rightD = depthAndCheck(root->right);

if(leftD==-1||rightD==-1)return -1; //find one node no balanced,then the tree is no balanced.

if(leftD-rightD<=-2||leftD-rightD>=2)return -1; //judge its two children.

return max(leftD,rightD)+1;

}

}

4.2 Given a directed graph, design an algorithm to find out whether there is a route between two nodes.

struct GraphNode{

int val; //value

vector<GraphNode*> next; //directed to nodes

};

Here, two nodes are A and B, we breadth first search the graph at the beginning of A to see whether there is a route from A to B, then breadth first search at the beginning of B to see whether there is a route from B to
A. We declare a set<GraphNode*> to record whether the Node is visited.

bool isHaveRoute(GraphNode *A,GraphNode *B){

if(A==B)return true;

set<GraphNode*>  visited;

list<GraphNode*>  array[2];

int cur=0,pre=1;

array[0].push(A);visited.insert(A);

while(!array[cur].empty()){

cur=!cur;pre=!pre;

array[cur].clear();

while(!array[pre].empty()){

for(int i=0;i<array[pre].front()->next.size();i++){

if(visited.count(array[pre].front()->next[i])==0){

if(array[pre].front()->next[i]==B)return true;

array[cur].push(array[pre].front()->next[i]);

visited.insert(array[pre].front()->next[i]);

}

}

array[pre].pop_front();

}

}

return false;

}

bool isHaveRouteAB(GraphNode *A,GraphNode *B){

if(isHaveRoute(A,B)||isHaveRoute(B,A))return true;

else return false;

}

4.3 Given a sorted (increasing order) array, write an algorithm to create a binary tree with minimal height.

I think the problem is to create a binary search tree with minimal height.

The left child is smaller than the parent and the right child is bigger than the parent. So, we can find the middle of the array, and divide this array to two part, the left part is the left child part of the middle and
the right part is the right child part.

TreeNode* binaryST(int a[],int left,int right){

if(left>right)return NULL;

int mid=left+(right-left)/2;

TreeNode *parent = new TreeNode(a[mid]);

parent->left = binaryST(a,left,mid-1);

parent->right = binaryST(a,mid+1,right);

return parent;

}

TreeNode *resBST(int a[],int n){

if(n<=0)return NULL;

return binaryST(a,0,n-1);

}

4.4 Given a binary search tree, design an algorithm which creates a linked list of all the nodes at each depth (i e , if you have a tree with depth D, you’ll have D linked lists).

BFS,like 4.2.

4.5 Write an algorithm to find the ‘next’ node (i e , in-order successor) of a given node in a binary search tree where each node has a link to its parent.

in-order, first, read the node's left, then the node, the the node's right.

When the node has right child, the successor will be the left-most child of it's right child part.

When the node is a left child,its parent is its successor.

When the node is a right child, traverse its parents until we find a parent that the node is in the left child part of this parent. This parent is the node's successor.

TreeNode* findNextNode(TreeNode* root){

if(root!=NULL)

if(root->parent==NULL||root->right!=NULL){

return findLeftMostChild(root->right);

}else{

while(root->parent){

if(root->parent->left==root)break;

root=root->parent;

}

return root->parent;

}

}

return NULL;

}

TreeNode* findLeftMostChild(TreeNode* root){

if(root==NULL)return NULL;

if(root->left)root=root->left;

return root;

}

4.6 Design an algorithm and write code to find the first common ancestor of two nodes in a binary tree.Avoid storing additional nodes in a data structure NOTE: This is not necessarily a binary search tree.

4.7 You have two very large binary trees: T1, with millions of nodes, and T2, with hundreds of nodes Create an algorithm to decide if T2 is a subtree of T1.

we traverse T1 to find a node that equal to T2's root, then compare T1 and T2 to find whether T2 is a subtree of T1.

bool isSubTree(TreeNode* T1,TreeNode* T2){

if(T2==NULL)return true;

if(T1==NULL)return false;

if(T1->val==T2->val){

if(isMatch(T1,T2))return true;

}

return isSubTree(T1->left,T2)||isSubTree(T1->right,T2);

}

bool isMatch(TreeNode* T1,TreeNode *T2){

if(T1==NULL&&T2==NULL)return true;

if(T1==NULL||T2==NULL)return false;

if(T1->val!=T2->val)return false;

return isMatch(T1->left,T2->left)&&isMatch(T1->right,T2->right);

}

4.8 You are given a binary tree in which each node contains a value. Design an algorithm to print all paths which sum up to that value. Note that it can be any path in the tree - it does not have to start at the root.

we declare a vector<int> to store one path from root to current node, and traverse this vector to find a path that sum up to the value.

void traverseAllPaths(TreeNode* root,int num,vector<int> buffer,int level){

if(root==NULL)return;

buffer.push_back(root->val);

int temp=num;

for(int i=level;i>=0;i--){

temp-=buffer[i];

if(temp==0)printfPath(buffer,i,level);

}

vector<int> bufferL,bufferR;

for(int i=0;i<buffer.size();i++){

bufferL.push_back(buffer[i]);

bufferR.push_back(buffer[i]);

}

traverseAllPaths(root->left,num,bufferL,level+1);

traverseAllPaths(root->right,num,bufferR,level+1);

}

void printfPath(vector<int> buffer,int begin,int end){

for(int i=begin;i<=end;i++)printf("%d ",buffer[i]);

printf("\n");

}

CareerCup Chapter 4 Trees and Graphs的更多相关文章

  1. Cracking the Coding Interview(Trees and Graphs)

    Cracking the Coding Interview(Trees and Graphs) 树和图的训练平时相对很少,还是要加强训练一些树和图的基础算法.自己对树节点的设计应该不是很合理,多多少少 ...

  2. 【CareerCup】Trees and Graphs—Q4.3

    转载请注明出处:http://blog.csdn.net/ns_code/article/details/24744177     题目: Given a sorted (increasing ord ...

  3. Chp4: Trees and Graphs

    1.Type of Tree 1. Binary Tree: a binary tree is a tree in which each node has at most two child node ...

  4. Careercup | Chapter 1

    1.1 Implement an algorithm to determine if a string has all unique characters. What if you cannot us ...

  5. Careercup | Chapter 4

    二叉查换树,左孩子小于等于根,右孩子大于根. 完全二叉树,除最后一层外,每一层上的节点数均达到最大值:在最后一层上只缺少右边的若干结点. complete binary tree 满二叉树,完美二叉树 ...

  6. Careercup | Chapter 3

    3.1 Describe how you could use a single array to implement three stacks. Flexible Divisions的方案,当某个栈满 ...

  7. Careercup | Chapter 2

    链表的题里面,快慢指针.双指针用得很多. 2.1 Write code to remove duplicates from an unsorted linked list.FOLLOW UPHow w ...

  8. Careercup | Chapter 8

    8.2 Imagine you have a call center with three levels of employees: respondent, manager, and director ...

  9. Careercup | Chapter 7

    7.4 Write methods to implement the multiply, subtract, and divide operations for integers. Use only ...

随机推荐

  1. Javascript新手集中营

        javascript是世界上最流行的编程语言,也许没有之一,看看github,stackoverflow上面的开源项目和问答就可略知一二.它可以用来开发web app.服务器.或者联合nati ...

  2. window应用移植到Linux下(应用移植)

     配置QT的环境变量,这台电脑à属性à高级系统设置à高级à环境变量à系统变量àpathàC:\Qt\Qt5.3.0\5.3\mingw482_32\bin;C:\Qt\Qt5.3.0\Tools\ ...

  3. GC日志分析

    JVM的GC日志的主要參数包含例如以下几个: -XX:+PrintGC 输出GC日志 -XX:+PrintGCDetails 输出GC的具体日志 -XX:+PrintGCTimeStamps 输出GC ...

  4. linux下动态连接变为静态打包,使用statifier_S展翅飞_新浪博客

    linux下动态连接变为静态打包,使用statifier_S展翅飞_新浪博客 linux下动态连接变为静态打包,使用statifier (2013-04-27 14:38:19) 转载▼

  5. Shell脚本检查memcache进程并自己主动重新启动

    修正版: #!/bin/sh #check memcache process and restart if down mm_bin="/usr/local/bin/memcached&quo ...

  6. Android利用反射获取状态栏(StatusBar)高度

    MainActivity如下: package cc.teststatusbarheight; import java.lang.reflect.Field; import android.os.Bu ...

  7. 已知直线上的两点 A(x1, y1), B(x2, y2) 和另外一点 C(x0, y0),求C点到直线的距离。

    数学知识太差,一点点积累,高手勿喷. 1. 先求出AB向量 a = ( x2-x1, y2-y1 ) 2. 求AB向量的单位方向向量 b = √((x2-x1)^2 + (y2-y1)^2)) a1 ...

  8. SE 2014年4月16日

    一. 描述BGP路由协议中  BGP路由携带 AS-PATH/ next-hop  / ORIGIN /  local-preference 属性的特点! BGP协议中的AS-PATH是AS列表,用来 ...

  9. SE 2014年4月2日

    一 描述OSPF协议 LSA(Type 1~5)的名称,始发者以及特点 第一类LSA (router lsa)该类lSA为启动了ospf进程的所有路由器都可以产生,该类LSA主要含有本地路由器的接口状 ...

  10. 【淡墨Unity3D Shader计划】一间 创建一个游戏场景 &amp; 第一Shader写作

    本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/40723789 作者:毛星云(浅墨)  ...