题意

输入两个正规表达式,判断两者是否相交(即存在一个串同时满足两个正规表达式)。本题的正规表达式包含如下几种情况:

  • 单个小写字符 $c$
  • 或:($P | Q$). 如果字符串 $s$ 满足 $P$ 或者满足 $Q$,则 $s$ 满足 $(P| Q)$
  • 连接:($PQ$). 如果字符串 $s_1$ 满足 $P$,$s_2$ 满足 $Q$,则 $s_1s_2$ 满足 $(PQ)$
  • 克莱因闭包:$(P^*)$. 如果字符串 $s$ 可以写成0个或多个字符串 $s_i$ 的连接 $s_1s_2...$,且每个串都满足 $P$,则 $s$ 满足 $(P^*)$。注意,空串也满足 $(P^*)$

分析

先把每种情况都转成自动机,正则表达式也就是这些自动机的组合。都转成 NFA,再使用DFS或BFS寻找一个同时被两个自动机接受的非空串。

码力不够啊(平常的模拟题都是交给队友做的),下面给出 lrj 的代码,%%%。

(好像UVa上这题数据错了,已经两年没人AC。

// UVa1672 Disjoint Regular Expressions
// Rujia Liu
//
// This is Problem 12-2 of <<Beginning Algorithm Contests>> 2nd edition
//
// This code is neither simplest nor most efficient, but it's easy to understand and fast enough.
// Algorithm implemented here:
// 1. build epsilon-NFA from the regex
// 2. build NFA by removing epsilon from epsilon-NFA. Note that we did NOT optimize the epsilon-NFA as described in the book.
// 3. use BFS to find a common string of these two NFAs
// Attention: the output should NOT be empty so we used a little trick.
//
// Alternative algorithm: do BFS directly on epsilon-NFAs.
// State is (s1,s2,b) where b=1 iff at least one non-epsilon transition is performed.
// However, this graph is now 0-1 weighted so we need to use deque (or two-phase BFS).
#include<cstdio>
#include<cstring>
#include<vector>
#include<set>
#include<string>
#include<queue>
#include<cassert>
#define REP(i,n) for(int i = 0; i < (n); ++i) using namespace std; // Part I: Expression Parser
struct ExprNode {
enum {A, STAR, OR, CONCAT};
int type, val;
ExprNode *l, *r; ExprNode(int type, ExprNode* l, ExprNode* r, int val = -):type(type),l(l),r(r),val(val){}
~ExprNode() {
if(l) delete l;
if(r) delete r;
}
}; struct Parser {
char* s;
int p, n; void Skip(char c) { p++; } // for debug purpose // (u)*
ExprNode* Item() {
ExprNode* u;
if(s[p] == '(') { Skip('('); u = Expr(); Skip(')'); }
else u = new ExprNode(ExprNode::A, NULL, NULL, s[p++]);
while(s[p] == '*') {
Skip('*');
u = new ExprNode(ExprNode::STAR, u, NULL);
}
return u;
} // u1u2u3...
ExprNode* Concat() {
ExprNode* u = Item();
while(s[p] && s[p] != ')' && s[p] != '|')
u = new ExprNode(ExprNode::CONCAT, u, Item());
return u;
} // u1|u2|u3
ExprNode* Expr() {
ExprNode* u = Concat();
while(s[p] == '|') {
Skip('|');
u = new ExprNode(ExprNode::OR, u, Concat());
}
return u;
} ExprNode* parse(char* str) {
s = str;
n = strlen(s);
p = ;
return Expr();
} }; // Part II: NFA construction
const int maxs = * + ; struct NFA {
int n; // number of states struct Transition {
int ch, next;
Transition(int ch = , int next = ):ch(ch),next(next){}
bool operator < (const Transition& rhs) const {
if(ch != rhs.ch) return ch < rhs.ch;
return next < rhs.next;
}
};
vector<Transition> trans[maxs]; void add(int s, int t, int c) {
trans[s].push_back(Transition(c, t));
} void process(ExprNode* u) {
int st = n++; // state 'start'
if(u->type == ExprNode::A) add(st, n, u->val);
else if(u->type == ExprNode::STAR) {
process(u->l);
add(st, st+, -);
add(st, n, -);
add(n-, st, -);
}
else if(u->type == ExprNode::OR) {
process(u->l);
int m = n;
process(u->r);
add(st, st+, -);
add(st, m, -);
add(m-, n, -);
add(n-, n, -);
}
else if(u->type == ExprNode::CONCAT) {
add(st, st+, -);
process(u->l);
add(n-, n, -);
process(u->r);
add(n-, n, -);
}
n++; // state 'end'
} void init(char* s) {
Parser p;
ExprNode* root = p.parse(s);
n = ;
for(int i = ; i < maxs; i++) {
trans[i].clear();
}
process(root);
delete root;
} vector<int> ss; // starting states void remove_epsilon() {
// find epsilon-closure for each state
vector<int> reachable[maxs];
int vis[maxs];
for(int i = ; i < n; i++) {
reachable[i].clear();
reachable[i].push_back(i);
queue<int> q;
q.push(i);
memset(vis, , sizeof(vis));
vis[i] = ;
while(!q.empty()) {
int s = q.front(); q.pop();
for(int j = ; j < trans[s].size(); j++)
if(trans[s][j].ch == -) {
int s2 = trans[s][j].next;
if(!vis[s2]) {
reachable[i].push_back(s2);
vis[s2] = ;
q.push(s2);
}
}
}
}
ss = reachable[]; // merge transitions
for(int i = ; i < n; i++) {
set<Transition> tr;
for(int j = ; j < trans[i].size(); j++) {
if(trans[i][j].ch == -) continue;
int s = trans[i][j].next;
for(int k = ; k < reachable[s].size(); k++)
tr.insert(Transition(trans[i][j].ch, reachable[s][k]));
}
trans[i] = vector<Transition>(tr.begin(), tr.end());
}
}
}; // Part III: BFS to find the answer const int maxn = + ;
const int maxq = * * * * + ; // case 26
char sa[maxn], sb[maxn]; struct State {
int s1, s2, fa, ch;
} states[maxq];
int ns; void print_solution(int s) {
if(states[s].fa == -) return;
print_solution(states[s].fa);
printf("%c", states[s].ch);
} void solve(const NFA& A, const NFA& B) {
queue<int> q;
int vis[maxs][maxs];
memset(vis, , sizeof(vis));
ns = ;
REP(i, A.ss.size())
REP(j, B.ss.size()) {
int s1 = A.ss[i], s2 = B.ss[j];
states[ns].s1 = s1;
states[ns].s2 = s2;
states[ns].fa = -;
q.push(ns++);
} while(!q.empty()) {
int s = q.front(); q.pop();
int s1 = states[s].s1;
int s2 = states[s].s2;
if(s1 == A.n- && s2 == B.n- && states[s].fa != -) {
printf("Wrong\n");
print_solution(s);
printf("\n");
return;
}
int n1 = A.trans[s1].size();
int n2 = B.trans[s2].size(); REP(i, n1) REP(j, n2)
if(A.trans[s1][i].ch == B.trans[s2][j].ch) {
int s1b = A.trans[s1][i].next;
int s2b = B.trans[s2][j].next;
int c = A.trans[s1][i].ch;
if(vis[s1b][s2b]) continue;
vis[s1b][s2b] = ;
states[ns].s1 = s1b;
states[ns].s2 = s2b;
states[ns].fa = s;
states[ns].ch = c;
q.push(ns++);
}
}
printf("Correct\n");
} NFA A, B;
int main() {
while(scanf("%s%s", sa, sb) == ) {
A.init(sa);
B.init(sb);
A.remove_epsilon();
B.remove_epsilon();
solve(A, B);
}
return ;
}

l

UVA 1672不相交的正规表达式的更多相关文章

  1. 学JS的心路历程-正规表达式Regular Expression

    今天我们来看正规表达式,在谈到为什么需要多学这个之前,先来看个示例. 假设需要判断输入字串是否含有“apple”: var text=“A apple a day keeps the doctor a ...

  2. 正规表达式 转 NFA C++

    今天来为大家分享一个编译原理中用正规表达式转NFA的小程序 正规表达式就是类似正则一样的式子,例如:(a|b)*abb,最后应该转化为: 大致的处理流程为: 例子中的表达式:(a|b)*abb,|和* ...

  3. 1.java实现——正规表达式判断

    目标:这个代码仅局限于所展示的正规表达式判断,也就是这是一个较单一的正规表达式判断(简易版). 既然是简易版的,所以若要修改这个正规表达式也是非常容易的,只要将二维数组中的数组修改即可.数组数据依据, ...

  4. 正规表达式与有限自动机和LEX

    正规式与有限自动机的等价性 一个正规式r与一个有限自动机M等价, L(r)=L(M) FA ->正规式,对任何FA M,都存在一个正规式r,使得L(r)=L(M). 正规式 -> FA, ...

  5. Linux学习十七、正规表达式练习题

    情境模拟题一:透过 grep 搜寻特殊字串,并配合数据流重导向来处理大量的文件搜寻问题. 目标:正确的使用正规表示法: 前提:需要了解数据流重导向,以及透过子命令 $(command) 来处理档名的搜 ...

  6. UVA 1661 Equation (后缀表达式,表达式树,模拟,实现)

    题意:给出一个后缀表达式f(x),最多出现一次x,解方程f(x) = 0. 读取的时候用一个栈保存之前的结点,可以得到一颗二叉树,标记出现'X'的路径,先把没有出现'X'的子树算完,由于读取建树的时候 ...

  7. 轻松学Shell之认识正规表达式

    离线下载观看:http://down.51cto.com/data/148117   650) this.width=650;" onclick='window.open("htt ...

  8. vs 2017 正规表达式替换整行多行数据

    ((<OutputFile>..*</OutputFile>)[\S\s])[\S\s] 从 <OutputFile> 开始 到 </OutputFile&g ...

  9. Swift中用正规表达式判断String是否是手机号码

    func isTelNumber(num:NSString)->Bool { var mobile = "^1(3[0-9]|5[0-35-9]|8[025-9])\\d{8}$&qu ...

随机推荐

  1. 【Linux】僵尸进程,孤儿进程以及wait函数,waitpid函数(有样例,分析很详细)

    本文内容: 1.僵尸进程,孤儿进程的定义,区别,产生原因,处理方法 2.wait函数,waitpid函数的分析,以及比较 背景:由于子进程的结束和父进程的运行是一个异步的过程,即父进程永远无法预测子进 ...

  2. KAFA优点和缺点

    我们上一期的Kafka教程中,我们讨论了Kafka的Books.今天,我们将讨论卡夫卡的优势和劣势.因为,在使用之前了解任何技术的局限性非常重要,在优点的情况下也是如此.所以,让我们详细讨论卡夫卡优势 ...

  3. CRT远程连接centos7,连接超时

    CRT远程连接centos7,连接超时 问题原因: 宿主机(win10)和虚拟机(centos7)不在同一个网段 在宿主机无法ping通虚拟机, 首先在cmd窗口ipconfig查看一下vmnet的i ...

  4. (六)linux 学习 -- 从 shell 眼中看世界

    The Linux Command Line 读书笔记 - 部分内容来自 http://billie66.github.io/TLCL/book/chap08.html 文章目录 字符展开 `*` 路 ...

  5. python中的for循环加强

    #先执行外面for循环,再执行里面for循环,接着执行外面for循环,程序结束 #打印结果为1,10,2 flag=False for i in range(1,10): print(i) if fl ...

  6. linux centos7开机自动启动程序实现

    1存放脚本位置 /etc/init.d/ServerManagerCLI.sh 该脚本是自己新建的内容参看2 增加执行权限 chmod +x /etc/rc.d/init.d/ServerManage ...

  7. golang方法和函数的区别

  8. HDU6037 Expectation Division 期望、高维前缀和

    传送门 设\(f_x\)表示答案,那么\(f_x = \frac{\sum\limits_{d \mid x} f_d}{\sigma_0(x)} + 1 = \frac{\sigma_0(x) + ...

  9. 微信公众号 分享接口 签名通过 分享无效果(JSSDK自定义分享接口的策略调整)

    为规范自定义分享链接功能在网页上的使用,自2017年4月25日起,JSSDK“分享到朋友圈”及“发送给朋友”接口,自定义的分享链接,其域名或路径必须与当前页面对应的公众号JS安全域名一致,否则将调用失 ...

  10. C# HtmlAgilityPack+Selenium爬取需要拉动滚动条的页面内容

    现在大多数网站都是随着滚动条的滑动加载页面内容的,因此单纯获得静态页面的Html是无法获得全部的页面内容的.使用Selenium就可以模拟浏览器拉动滑动条来加载所有页面内容. 前情提要 C#HtmlA ...