SparkSQL读写外部数据源-通过jdbc读写mysql数据库
object JdbcDatasourceTest {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder()
.appName("JdbcDatasourceTest")
.master("local")
.getOrCreate()
//url:
// jdbc:mysql://master:3306/test
// jdbc:oracle://master:3306/test
// jdbc:db2://master:3306/test
// jdbc:derby://master:3306/test
// jdbc:sqlserver://master:3306/test
// jdbc:postgresql://master:3306/test
val mysqlUrl = "jdbc:mysql://master:3306/test"
//1: 读取csv文件数据
val optsMap = Map("header" -> "true", "inferSchema" -> "true")
val df = spark.read.options(optsMap).csv(s"${BASE_PATH}/jdbc_demo_data.csv")
df.show()
val properties = new Properties()
properties.put("user", "root")
properties.put("password", "root")
//向Mysql数据库写数据
df.write.mode(SaveMode.Overwrite).jdbc(mysqlUrl, "person", properties)
//从mysql数据库读取数据
val jdbcDFWithNoneOption = spark.read.jdbc(mysqlUrl, "person", properties)
jdbcDFWithNoneOption.show()
//写数据的过程:
//1 : 建表
//第一次写的时候,需要创建一张表,建表语句类似如下:
//CREATE TABLE t (name string) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1
//ENGINE=InnoDB使用innodb引擎 DEFAULT CHARSET=utf8 数据库默认编码为utf-8 AUTO_INCREMENT=1 自增键的起始序号为1
//.InnoDB,是MySQL的数据库引擎之一,为MySQL AB发布binary的标准之一
//属性配置ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1可以通过参数createTableOptions传给spark
var writeOpts =
Map[String, String]("createTableOptions" -> "ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1")
df.write.mode(SaveMode.Overwrite).options(writeOpts).jdbc(mysqlUrl, "person", properties)
//2: 设置表的schema
// 一般表的schema是和DataFrame是一致的,字段的类型是从spark sql的DataType翻译到各个数据库对应的数据类型
// 如果字段在数据库中的类型不是你想要的,
// 你可以通过参数createTableColumnTypes来设置createTableColumnTypes=age long,name string
writeOpts = Map[String, String]("createTableColumnTypes" -> "id long,age long")
df.write.mode(SaveMode.Overwrite).options(writeOpts).jdbc(mysqlUrl, "person", properties)
//3: 事务隔离级别的设置,通过参数isolationLevel设置
// NONE 不支持事物1
// READ_UNCOMMITTED 会出现脏读、不可重复读以及幻读
// READ_COMMITTED 不会出现脏读,但是还是会出现不可重复读以及幻读
// REPEATABLE_READ 不会出现脏读以及不可重复读,但是还会出现幻读
// SERIALIZABLE 脏读、不可重复读以及幻读都不会出现了
writeOpts = Map[String, String]("isolationLevel" -> "READ_UNCOMMITTED")
df.write.mode(SaveMode.Overwrite).options(writeOpts).jdbc(mysqlUrl, "person", properties)
//4:写数据
//写数据的过程中可以采用批量写数据,每一批写的数据量的大小可以通过参数batchsize设置,默认是:1000
writeOpts = Map[String, String]("batchsize" -> "100")
df.write.mode(SaveMode.Overwrite).options(writeOpts).jdbc(mysqlUrl, "person", properties)
//5:第二次写数据的时候,这个时候表已经存在了,所以需要区分SaveMode
//当SaveMode=Overwrite 的时候,需要先清理表,然后再写数据。清理表的方法又分两种:
// 第一种是truncate即清空表,如果是这种的话,则先清空表,然后再写数据
// 第二种是drop掉表,如果是这种的话,则先drop表,然后建表,最后写数据
//以上两种方式的选择,可以通过参数truncate(默认是false)控制。因为truncate清空数据可能会失败,所以可以使用drop table的方式
//而且不是所有的数据库都支持truncate table,其中PostgresDialect就不支持
//当SaveMode=Append 的时候,则直接写数据就行
//当SaveMode=ErrorIfExists 的时候,则直接抛异常
//当SaveMode=Ignore 的时候,则直接不做任何事情
writeOpts = Map[String, String]("truncate" -> "false")
df.write.mode(SaveMode.Overwrite).options(writeOpts).jdbc(mysqlUrl, "person", properties)
//按照某个分区字段进行分区读数据
//partitionColumn 分区的字段,这个字段必须是integral类型的
//lowerBound 用于决定分区步数的partitionColumn的最小值
//upperBound 用于决定分区步数的partitionColumn的最大值
//numPartitions 分区数,和lowerBound以及upperBound一起来为每一个分区生成sql的where字句
//如果upperBound - lowerBound >= numPartitions,那么我们就取numPartitions个分区,
// 否则我们取upperBound - lowerBound个分区数
// 8 - 3 = 5 > 3 所以我们取3个分区
// where id < 3 + 1 这个1是通过 8/3 - 3/3 = 1得来的
// where id >= 3 + 1 and id < 3 + 1 + 1
// where id >= 3 + 1 + 1
//配置的方式
val readOpts = Map[String, String]("numPartitions" -> "3", "partitionColumn" -> "id",
"lowerBound" -> "3", "upperBound" -> "8", "fetchsize" -> "100")
val jdbcDF = spark.read.options(readOpts).jdbc(mysqlUrl, "person", properties)
jdbcDF.rdd.partitions.size
jdbcDF.rdd.glom().collect()
jdbcDF.show()
//api的方式
spark.read.jdbc(mysqlUrl, "person", "id", 3, 8, 3, properties).show()
//参数predicates: Array[String],用于决定每一个分区对应的where子句,分区数就是数组predicates的大小
val conditionDF = spark.read.jdbc(mysqlUrl,
"person", Array("id > 2 and id < 5", "id >= 5 and id < 8"), properties)
conditionDF.rdd.partitions.size
conditionDF.rdd.glom().collect()
conditionDF.show()
//每次读取的时候,可以采用batch的方式读取数据,batch的数量可以由参数fetchsize来设置。默认为:0,表示jdbc的driver来估计这个batch的大小
//不管是读还是写,都有分区数的概念,
// 读的时候是通过用户设置numPartitions参数设置的,
// 而写的分区数是DataFrame的分区数
//需要注意一点的是不管是读还是写,每一个分区都会打开一个jdbc的连接,所以分区不宜太多,要不然的话会搞垮数据库
//写的时候,可以通过DataFrame的coalease接口来减少分区数
spark.stop()
}
}
SparkSQL读写外部数据源-通过jdbc读写mysql数据库的更多相关文章
- Java通过JDBC 进行MySQL数据库操作
转自: http://blog.csdn.net/tobetheender/article/details/52772157 Java通过JDBC 进行MySQL数据库操作 原创 2016年10月10 ...
- JDBC连接MySQL数据库及演示样例
JDBC是Sun公司制定的一个能够用Java语言连接数据库的技术. 一.JDBC基础知识 JDBC(Java Data Base Connectivity,java数据库连接)是一种用 ...
- JDBC连接MySQL数据库及示例
JDBC是Sun公司制定的一个可以用Java语言连接数据库的技术. 一.JDBC基础知识 JDBC(Java Data Base Connectivity,java数据库连接)是一 ...
- JDBC连接MySQL数据库代码
******************************************************1********************************************* ...
- [原创]java使用JDBC向MySQL数据库批次插入10W条数据测试效率
使用JDBC连接MySQL数据库进行数据插入的时候,特别是大批量数据连续插入(100000),如何提高效率呢?在JDBC编程接口中Statement 有两个方法特别值得注意:通过使用addBatch( ...
- JDBC连接MySQL数据库代码模板
下面这个例子是最简单的JDBC连接MySQL数据库的例子. 一般步骤: 1.注册驱动: 2.建立连接: 3.创建语句: 4.处理结果: 5.释放资源. 注意: 1.软件开发环境:MyEclipse 8 ...
- java jdbc 连接mysql数据库 实现增删改查
好久没有写博文了,写个简单的东西热热身,分享给大家. jdbc相信大家都不陌生,只要是个搞java的,最初接触j2ee的时候都是要学习这么个东西的,谁叫程序得和数据库打交道呢!而jdbc就是和数据库打 ...
- JDBC操作MySQL数据库案例
JDBC操作MySQL数据库案例 import java.sql.Connection; import java.sql.DriverManager; import java.sql.Prepared ...
- Crystal Reports 2008(水晶报表) JDBC连接mysql数据库
在本blog中,主要介绍的是Crystal Reports 2008使用JDBC连接mysql数据库. 在连接之间,首先要确认你电脑上面都安装了mysql数据库. 其次,就是jdbc连接数据时候所使用 ...
随机推荐
- 何为JavaScript原型?读完你就明白了
熟悉软件开发的朋友都知道,原型是产品或数据系统的一个基本的实用模型,通常为示范目的或开发程序的部份结构.原型的重要性不言而喻,接下来我就会为你讲解关于JavaScript中的原型概念.原型对象释义每一 ...
- IntelliJ IDEA 常用快捷键 之 Windows 版
IntelliJ IDEA(简称 IDEA),是 Java 语言开发的集成环境,IDEA 在业界被公认为最好的 Java 开发工具之一,尤其在智能代码助手.代码自动提示.重构.J2EE 支持.各类版本 ...
- SQL Server 类似正则表达式的字符处理问题
SQL Serve提供了简单的字符模糊匹配功能,比如:like, patindex,不过对于某些字符处理场景还显得并不足够,日常碰到的几个问题有: 1. 同一个字符/字符串,出现了多少次 2. 同一个 ...
- 嵌入式02 STM32 实验11 NVIC和中断总结
一.基础知识 1.cortex-m3支持256个中断,其中包含了16个内核中断,240个外部中断 2.STM32只有84个中断,包括16个内核中断和68个可屏蔽中断 3.STM32F103上只有60个 ...
- flink checkpoint状态储存三种方式选择
Flink 提供了三种可用的状态后端:MemoryStateBackend,FsStateBackend,和RocksDBStateBackend. MemoryStateBackend Memory ...
- 7. Spark SQL的运行原理
7.1 Spark SQL运行架构 Spark SQL对SQL语句的处理和关系型数据库类似,即词法/语法解析.绑定.优化.执行.Spark SQL会先将SQL语句解析成一棵树,然后使用规则(Rule) ...
- C# 获取特殊日期
//1.当前时间DateTime dt = DateTime.Now; //2.本周周一DateTime startWeek = dt.AddDays(1 - Convert.ToInt32(dt.D ...
- 20、Outer Apply 和 Cross Apply
1.場合 select...caseが複雑の時 2.運用方法 SELECT * FROM stu CROSS APPLY ( --like inner join * FROM score WHERE ...
- python关于try except的使用方法
一.常见错误总结 AttributeError 试图访问一个对象没有的树形,比如foo.x,但是foo没有属性x IOError 输入/输出异常;基本上是无法打开文件 ImportError 无法引入 ...
- Gitlab 重置 root 密码
要重置root密码,请先使用root权限登录服务器.使用以下命令启动Ruby on Rails控制台: gitlab-rails console production 等到控制台加载完毕,您可以通过搜 ...