1.热力图heatmap

seaborn.heatmap(data, vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=None, fmt='.2g', annot_kws=None, linewidths=0, linecolor='white', cbar=True, cbar_kws=None, cbar_ax=None, square=False, xticklabels='auto', yticklabels='auto', mask=None, ax=None, **kwargs)

方法:用颜色矩阵去显示数据在两个维度下的度量值

参数:

  • data : 要显示的数据
ax = sns.heatmap(data)
  • vmin, vmax : 显示的数据值的最大和最小的范围
ax = sns.heatmap(data,vmin=0, vmax=1)
  • cmap : matplotlib颜色表名称或对象,或颜色列表,可选从数据值到色彩空间的映射。如果没有提供,默认设置
ax = sns.heatmap(data,vmin=0, vmax=1, cmap = 'GnBu')
  • center : 指定色彩的中心值
ax = sns.heatmap(data,vmin=0, vmax=1, cmap = 'GnBu', center=0.7)
  • robust : 如果“Ture”和“ vmin或” vmax不存在,则使用强分位数计算颜色映射范围,而不是极值。
ax = sns.heatmap(data,vmin=0, vmax=1, cmap = 'GnBu', center=0.5,
robust=False) #Set1
  • annot : 如果为True,则将数据值写入每个单元格中
ax = sns.heatmap(data,vmin=0, vmax=1, cmap = 'GnBu', center=0.5,
robust=False,annot=True) #Set1
  • fmt : 表格里显示数据的类型
fmt ='.0%'#显示百分比
fmt ='f' 显示完整数字 = fmt ='g'
fmt ='.3'显示小数的位数 = fmt ='.3f' = fmt ='.3g'
  • annot_kws : 键,值映射的dict,可选
  • linewidths : 划分每个单元格的线的宽度。
  • linecolor : 划分每个单元格的线的颜色。
  • cbar : 是否绘制颜色条:colorbar,默认绘制
  • cbar_kws : 未知 cbar_ax : 显示x-y坐标,而不是节点的编号
  • square : 为‘True’时,整个网格为一个正方形
  • xticklabels, yticklabels : 可以以字符串进行命名,也可以调节编号的间隔,也可以不显示坐标
ax = sns.heatmap(uniform_data,cmap = 'RdBu', center=0,cbar = True, square = False,xticklabels =['12','22'])#字符串命名
ax = sns.heatmap(uniform_data,cmap = 'RdBu', center=0,cbar = True, square = False,xticklabels =2)#编号间隔为2
ax = sns.heatmap(uniform_data,cmap = 'RdBu', center=0,cbar = True, square = False,xticklabels =False)#不显示坐标

举例:

plt.figure(figsize = (12,6))
corr_values = data.corr()
sns.heatmap(corr_values, annot=True,vmax=1, square=True, cmap="Blues",fmt='.2f')
plt.tight_layout()
plt.savefig('heatmap.png',dpi=600)
plt.show()

2.聚类图clustermap

seaborn.clustermap(data, pivot_kws=None, method='average', metric='euclidean', z_score=None, standard_scale=None, figsize=None, cbar_kws=None, row_cluster=True, col_cluster=True, row_linkage=None, col_linkage=None, row_colors=None, col_colors=None, mask=None, **kwargs)
  • 除此之外,clustermap 支持绘制层次聚类结构图。如下所示,我们先去掉原数据集中最后一个目标列,传入特征数据即可。当然,你需要对层次聚类有所了解,否则很难看明白图像多表述的含义。
  • seaborn.clustermap

举例:

iris.pop("species")
sns.clustermap(iris)

参考文献:

【1】python3.x-seaborn.heatmap随笔

【2】中文官网

seaborn---画热力图的更多相关文章

  1. seaborn画热力图注意的几点问题

    最近在使用注意力机制实现文本分类,我们需要观察每一个样本中,模型的重心放在哪里了,就是观察到权重最大的token.这时我们需要使用热力图进行可视化. 我这里用到:seaborn seaborn.hea ...

  2. Matplotlib学习---用seaborn画直方图,核密度图(histogram, kdeplot)

    由于直方图受组距(bin size)影响很大,设置不同的组距可能会产生完全不同的可视化结果.因此我们可以用密度平滑估计来更好地反映数据的真实特征.具体可参见这篇文章:https://blog.csdn ...

  3. Python可视化:Seaborn库热力图使用进阶

    前言 在日常工作中,经常可以见到各种各种精美的热力图,热力图的应用非常广泛,下面一起来学习下Python的Seaborn库中热力图(heatmap)如何来进行使用. 本次运行的环境为: windows ...

  4. Matplotlib学习---用seaborn画联合分布图(joint plot)

    有时我们不仅需要查看单个变量的分布,同时也需要查看变量之间的联系,这时就需要用到联合分布图. 这里利用Jake Vanderplas所著的<Python数据科学手册>一书中的数据,学习画图 ...

  5. Matplotlib学习---用seaborn画矩阵图(pair plot)

    矩阵图非常有用,人们经常用它来查看多个变量之间的联系. 下面用著名的鸢尾花数据来画一个矩阵图.从sklearn导入鸢尾花数据,然后将其转换成pandas的DataFrame类型,最后用seaborn画 ...

  6. seaborn画出的一些好看的图片

    PYSPARK_DRIVER_PYTHON=/home/zhangyu/anaconda3/bin/jupyter-notebook PYSPARK_DRIVER_PYTHON_OPTS=" ...

  7. Python数据可视化的10种技能

    今天我来给你讲讲Python的可视化技术. 如果你想要用Python进行数据分析,就需要在项目初期开始进行探索性的数据分析,这样方便你对数据有一定的了解.其中最直观的就是采用数据可视化技术,这样,数据 ...

  8. python画混淆矩阵(confusion matrix)

    混淆矩阵(Confusion Matrix),是一种在深度学习中常用的辅助工具,可以让你直观地了解你的模型在哪一类样本里面表现得不是很好. 如上图,我们就可以看到,有一个样本原本是0的,却被预测成了1 ...

  9. Matplotlib学习---用matplotlib画直方图/密度图(histogram, density plot)

    直方图用于展示数据的分布情况,x轴是一个连续变量,y轴是该变量的频次. 下面利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://d ...

  10. 可视化库-seaborn-热力图(第五天)

    1. 画一个基本的热力图, 通过热力图用来观察样本的分布情况 import matplotlib.pyplot as plt import numpy as np np.random.seed(0) ...

随机推荐

  1. Spring Security教程之整合SpringMVC(六)

    一.前言 Spring Security系列教程中,前五篇为同一人所写,而本文是博主依据第三方文章整合而出,与前五篇文章的作者不是同一系列. 但本文以前五篇文章为基础,在前面文章所建立的Spring ...

  2. SQL 实现地区的实现树形结构递归查询(无限级分类),level为节点层级,由小至大依次

    //SQL 实现地区的实现树形结构递归查询(无限级分类),level为节点层级,由小至大依次 2018-09-25 StringBuilder areaSQL = new StringBuilder( ...

  3. Python 中如何判断 list 中是否包含某个元素

    在python中判断 list 中是否包含某个元素: ——可以通过in和not in关键字来判读 例如: abcList=['a','b','c',1,2,3] if 'a' in abcList: ...

  4. 用idea如何把一个写好的项目传到GitHub上

    原文地址:https://blog.csdn.net/u010775025/article/details/79219491 一.登录到自己的GitHub上,创建一个新的仓库如下图springboot ...

  5. TRex,一个基于DPDK的数据包发生器,测试仪

    1. introduction TRex是cisco基于Intel dpdk开发的软件程序.推荐在CentOS/RHEL 7.6, 64bits中运行,否则connectx-4网卡不可使用. 笔者在U ...

  6. Docker 下的Zookeeper以及.ne core 的分布式锁

    单节点 1.拉取镜像:docker pull zookeeper 2.运行容器 a.我的容器同一放在/root/docker下面,然后创建相应的目录和文件, mkdir zookeeper cd zo ...

  7. opencv imshow plt imshow

    opencv官方文档上写的,https://docs.opencv.org/master/dc/d2e/tutorial_py_image_display.html Color image loade ...

  8. java异常的基本概念和处理流程

    一.异常的基本概念 在java中把导致程序中断运行的情况分为两种,一种就是异常,而另外一种叫做错误.所有异常的基类是Exception,错误的基类是Error.Exception是在java程序中可以 ...

  9. Debian忘记密码重置

    前一阵子因为特殊原因我把一个网站的VPS服务器关闭了,结果竟把SSH密码忘了,也没有使用SSH密钥,因为上面还有网站文件不能选择重装,只能尝试在面板重置,但是面板返回结果一直是404我无法获得重置的密 ...

  10. 完全图解 HTTPS

    安全基础 我们先来看下数据在互联网上数据传递可能会出现的三个比较有代表性的问题,其实后面提到的所有方法,都是围绕解决这三个问题而提出来的. 窃听 伪造 否认 对称密钥加密 假设 A 正在通过互联网向  ...