Useful NumPy functions: Reshape, Argpartition, Clip, Extract, Setdiff1d
In everyday data processing for Machine Learning and Data Science projects, we encounter unique situations, those require boilerplate code to solve the problem. Over the period some of those are converted into base features provided by the core language or the package itself as per need and usage from the community. Here I am sharing 5 elegant python Numpy functions, which can be used for efficient and neat data manipulation.
1) Use of -1 in Reshape
Numpy allows us to reshape a matrix provided new shape should be compatible with the original shape. One interesting aspect of this new shape is, we can give one of the shape parameter as -1. It simply means that it is an unknown dimension and we want Numpy to figure it out. Numpy will figure this by looking at the ‘length of the array and remaining dimensions’ and making sure it satisfies the above mentioned criteria. Let's see one example now.

Pictorial representation of different reshape with one dimension as -1
a = np.array([[1, 2, 3, 4],
[5, 6, 7, 8]])
a.shape
(2, 4)
Suppose we give row as 1 and -1 as column then Numpy will able to find column as 8.
a.reshape(1,-1)
array([[1, 2, 3, 4, 5, 6, 7, 8]])
Suppose we give row as -1 and 1 as column then Numpy will able to find row as 8.
a.reshape(-1,1)
array([[1],
[2],
[3],
[4],
[5],
[6],
[7],
[8]])
Similarly below are possible.
a.reshape(-1,4)
array([[1, 2, 3, 4],
[5, 6, 7, 8]])a.reshape(-1,2)
array([[1, 2],
[3, 4],
[5, 6],
[7, 8]])a.reshape(2,-1)
array([[1, 2, 3, 4],
[5, 6, 7, 8]])a.reshape(4,-1)
array([[1, 2],
[3, 4],
[5, 6],
[7, 8]])
This is also applicable to any higher level tensor reshape as well but only one dimension can be given -1.
a.reshape(2,2,-1)
array([[[1, 2],
[3, 4]], [[5, 6],
[7, 8]]])a.reshape(2,-1,1)
array([[[1],
[2],
[3],
[4]], [[5],
[6],
[7],
[8]]])
If we try to reshape a non-compatible shape or more than one unknown shape then there will be an error message.
a.reshape(-1,-1)
ValueError: can only specify one unknown dimensiona.reshape(3,-1)
ValueError: cannot reshape array of size 8 into shape (3,newaxis)
To summarize, when reshaping an array, the new shape must contain the same number of elements as the old shape, meaning the products of the two shapes’ dimensions must be equal. When using a -1, the dimension corresponding to the -1 will be the product of the dimensions of the original array divided by the product of the dimensions given to reshape so as to maintain the same number of elements.
2) Argpartition : Find N maximum values in an array

Numpy has a function called argpartition which can efficiently find largest of N values index and in-turn N values. It gives index and then you can sort if you need sorted values.
array = np.array([10, 7, 4, 3, 2, 2, 5, 9, 0, 4, 6, 0])index = np.argpartition(array, -5)[-5:]
index
array([ 6, 1, 10, 7, 0], dtype=int64)np.sort(array[index])
array([ 5, 6, 7, 9, 10])
3) Clip : How to keep values in an array within an interval
In many data problem or algorithm (like PPO in Reinforcement Learning) we need to keep all values within an upper and lower limit. Numpy has a built in function called Clip that can be used for such purpose. Numpy clip() function is used to Clip (limit) the values in an array. Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of [-1, 1] is specified, values smaller than -1 become -1, and values larger than 1 become 1.

Clip example with min value 2 and maximum value 6
#Example-1
array = np.array([10, 7, 4, 3, 2, 2, 5, 9, 0, 4, 6, 0])
print (np.clip(array,2,6))[6 6 4 3 2 2 5 6 2 4 6 2]#Example-2
array = np.array([10, -1, 4, -3, 2, 2, 5, 9, 0, 4, 6, 0])
print (np.clip(array,2,5))[5 2 4 2 2 2 5 5 2 4 5 2]
4) Extract: To extract specific elements from an array based on condition
We can use Numpy extract() function to extract specific elements from an array that matches the condition.

arr = np.arange(10)
arrarray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])# Define the codition, here we take MOD 3 if zero
condition = np.mod(arr, 3)==0
conditionarray([ True, False, False, True, False, False, True, False, False,True])np.extract(condition, arr)
array([0, 3, 6, 9])
Similarly, we can use direct condition with combination of AND and OR if required like
np.extract(((arr > 2) & (arr < 8)), arr)array([3, 4, 5, 6, 7])
5) setdiff1d : How to find unique values in an array compared to another
Return the unique values in an array that are not in present in another array. This is equivalent to set difference of two arrays.

a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
b = np.array([3,4,7,6,7,8,11,12,14])
c = np.setdiff1d(a,b)
carray([1, 2, 5, 9])
Final Note :
These are 5 Numpy functions which are not used frequently by the community but they are neat and elegant. In my view, we should use them whenever there is similar situation as these provide not just less code but mostly smart way of achieving a solution for a complex problem.
Useful NumPy functions: Reshape, Argpartition, Clip, Extract, Setdiff1d的更多相关文章
- numpy中的argpartition
numpy.argpartition(a, kth, axis=-1, kind='introselect', order=None) 在快排算法中,有一个典型的操作:partition.这个操作指: ...
- numpy 矩阵变换 reshape ravel flatten
1. 两者的区别在于返回拷贝(copy)还是返回视图(view),numpy.flatten()返回一份拷贝,对拷贝所做的修改不会影响(reflects)原始矩阵,而numpy.ravel()返回的是 ...
- python库numpy的reshape的终极解释
a = np.arange(2*4*4) b = a.reshape(1,4,4,2) #应该这样按反序来理解:最后一个2是一个只有2个元素的向量,最后的4,2代表4×2的矩阵,最 ...
- 小白眼中的AI之~Numpy基础
周末码一文,明天见矩阵- 其实Numpy之类的单讲特别没意思,但不稍微说下后面说实际应用又不行,所以大家就练练手吧 代码裤子: https://github.com/lotapp/BaseCode ...
- numpy基本用法
numpy 简介 numpy的存在使得python拥有强大的矩阵计算能力,不亚于matlab. 官方文档(https://docs.scipy.org/doc/numpy-dev/user/quick ...
- numpy快速指南
Quickstart tutorial 引用https://docs.scipy.org/doc/numpy-dev/user/quickstart.html Prerequisites Before ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 3、Python Basics with numpy (optional)
Python Basics with numpy (optional)Welcome to your first (Optional) programming exercise of the deep ...
- Python Basics with Numpy
Welcome to your first assignment. This exercise gives you a brief introduction to Python. Even if yo ...
- Python Basics with numpy (optional)
Python Basics with Numpy (optional assignment) Welcome to your first assignment. This exercise gives ...
随机推荐
- C#读写设置修改调整UVC摄像头画面-焦点
有时,我们需要在C#代码中对摄像头的焦点进行读和写,并立即生效.如何实现呢? 建立基于SharpCamera的项目 首先,请根据之前的一篇博文 点击这里 中的说明,建立基于SharpCamera的摄像 ...
- Docker Cheatsheet
一.创建 docker create:创建容器,处于停止状态. centos:latest:centos容器:最新版本(也可以指定具体的版本号).本地有就使用本地镜像,没有则从远程镜像库拉取.创建成功 ...
- 换个语言学一下 Golang (10)——并行计算
如果说Go有什么让人一见钟情的特性,那大概就是并行计算了吧. 做个题目 如果我们列出10以下所有能够被3或者5整除的自然数,那么我们得到的是3,5,6和9.这四个数的和是23.那么请计算1000以下( ...
- 浏览网页隐藏服务器IP
host文件修改 notepad %windir%\system32\drivers\etc\hosts 目标IP localhost.autumn.com 可能会导致HTTP Status Code ...
- 从 Vue 的视角学 React(四)—— 组件传参
组件化开发的时候,参数传递是非常关键的环节 哪些参数放在组件内部管理,哪些参数由父组件传入,哪些状态需要反馈给父组件,都需要在设计组件的时候想清楚 但实现这些交互的基础,是明白组件之间参数传递的方式, ...
- PostgreSql那点事(文件读取写入、命令执行的办法)
• 2013/07/9 作者: admin PostgreSql那点事(文件读取写入.命令执行的办法) 今天无意发现了个PostgreSQL环境,线上学习了下,一般的数据注射(读写数据库)差异不大,不 ...
- web由http升级为https搭建
nginx实现http访问 server { listen default_server; listen [::]: default_server; server_name _; root /usr/ ...
- Pycharm安装模块提示module 'pip' has no attribute 'main'的问题
解决pycharm问题:module 'pip' has no attribute 'main' 转自: <解决pycharm问题:module 'pip' has no attribute ' ...
- 爬虫之selenium模块;无头浏览器的使用
一,案例 爬取站长素材中的图片:http://sc.chinaz.com/tupian/gudianmeinvtupian.html import requests from lxml import ...
- 【Git】.DS_Store 是什么文件
一.为啥会注意到该文件 合并代码的时候,.DS_Store文件发生了冲突,然后进入到项目目录去看,果然存在该文件,就比较好奇该文件是干什么的. 二..DS_Store 是什么文件 .DS_Store( ...