Useful NumPy functions: Reshape, Argpartition, Clip, Extract, Setdiff1d
In everyday data processing for Machine Learning and Data Science projects, we encounter unique situations, those require boilerplate code to solve the problem. Over the period some of those are converted into base features provided by the core language or the package itself as per need and usage from the community. Here I am sharing 5 elegant python Numpy functions, which can be used for efficient and neat data manipulation.
1) Use of -1 in Reshape
Numpy allows us to reshape a matrix provided new shape should be compatible with the original shape. One interesting aspect of this new shape is, we can give one of the shape parameter as -1. It simply means that it is an unknown dimension and we want Numpy to figure it out. Numpy will figure this by looking at the ‘length of the array and remaining dimensions’ and making sure it satisfies the above mentioned criteria. Let's see one example now.

Pictorial representation of different reshape with one dimension as -1
a = np.array([[1, 2, 3, 4],
[5, 6, 7, 8]])
a.shape
(2, 4)
Suppose we give row as 1 and -1 as column then Numpy will able to find column as 8.
a.reshape(1,-1)
array([[1, 2, 3, 4, 5, 6, 7, 8]])
Suppose we give row as -1 and 1 as column then Numpy will able to find row as 8.
a.reshape(-1,1)
array([[1],
[2],
[3],
[4],
[5],
[6],
[7],
[8]])
Similarly below are possible.
a.reshape(-1,4)
array([[1, 2, 3, 4],
[5, 6, 7, 8]])a.reshape(-1,2)
array([[1, 2],
[3, 4],
[5, 6],
[7, 8]])a.reshape(2,-1)
array([[1, 2, 3, 4],
[5, 6, 7, 8]])a.reshape(4,-1)
array([[1, 2],
[3, 4],
[5, 6],
[7, 8]])
This is also applicable to any higher level tensor reshape as well but only one dimension can be given -1.
a.reshape(2,2,-1)
array([[[1, 2],
[3, 4]], [[5, 6],
[7, 8]]])a.reshape(2,-1,1)
array([[[1],
[2],
[3],
[4]], [[5],
[6],
[7],
[8]]])
If we try to reshape a non-compatible shape or more than one unknown shape then there will be an error message.
a.reshape(-1,-1)
ValueError: can only specify one unknown dimensiona.reshape(3,-1)
ValueError: cannot reshape array of size 8 into shape (3,newaxis)
To summarize, when reshaping an array, the new shape must contain the same number of elements as the old shape, meaning the products of the two shapes’ dimensions must be equal. When using a -1, the dimension corresponding to the -1 will be the product of the dimensions of the original array divided by the product of the dimensions given to reshape so as to maintain the same number of elements.
2) Argpartition : Find N maximum values in an array

Numpy has a function called argpartition which can efficiently find largest of N values index and in-turn N values. It gives index and then you can sort if you need sorted values.
array = np.array([10, 7, 4, 3, 2, 2, 5, 9, 0, 4, 6, 0])index = np.argpartition(array, -5)[-5:]
index
array([ 6, 1, 10, 7, 0], dtype=int64)np.sort(array[index])
array([ 5, 6, 7, 9, 10])
3) Clip : How to keep values in an array within an interval
In many data problem or algorithm (like PPO in Reinforcement Learning) we need to keep all values within an upper and lower limit. Numpy has a built in function called Clip that can be used for such purpose. Numpy clip() function is used to Clip (limit) the values in an array. Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of [-1, 1] is specified, values smaller than -1 become -1, and values larger than 1 become 1.

Clip example with min value 2 and maximum value 6
#Example-1
array = np.array([10, 7, 4, 3, 2, 2, 5, 9, 0, 4, 6, 0])
print (np.clip(array,2,6))[6 6 4 3 2 2 5 6 2 4 6 2]#Example-2
array = np.array([10, -1, 4, -3, 2, 2, 5, 9, 0, 4, 6, 0])
print (np.clip(array,2,5))[5 2 4 2 2 2 5 5 2 4 5 2]
4) Extract: To extract specific elements from an array based on condition
We can use Numpy extract() function to extract specific elements from an array that matches the condition.

arr = np.arange(10)
arrarray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])# Define the codition, here we take MOD 3 if zero
condition = np.mod(arr, 3)==0
conditionarray([ True, False, False, True, False, False, True, False, False,True])np.extract(condition, arr)
array([0, 3, 6, 9])
Similarly, we can use direct condition with combination of AND and OR if required like
np.extract(((arr > 2) & (arr < 8)), arr)array([3, 4, 5, 6, 7])
5) setdiff1d : How to find unique values in an array compared to another
Return the unique values in an array that are not in present in another array. This is equivalent to set difference of two arrays.

a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
b = np.array([3,4,7,6,7,8,11,12,14])
c = np.setdiff1d(a,b)
carray([1, 2, 5, 9])
Final Note :
These are 5 Numpy functions which are not used frequently by the community but they are neat and elegant. In my view, we should use them whenever there is similar situation as these provide not just less code but mostly smart way of achieving a solution for a complex problem.
Useful NumPy functions: Reshape, Argpartition, Clip, Extract, Setdiff1d的更多相关文章
- numpy中的argpartition
numpy.argpartition(a, kth, axis=-1, kind='introselect', order=None) 在快排算法中,有一个典型的操作:partition.这个操作指: ...
- numpy 矩阵变换 reshape ravel flatten
1. 两者的区别在于返回拷贝(copy)还是返回视图(view),numpy.flatten()返回一份拷贝,对拷贝所做的修改不会影响(reflects)原始矩阵,而numpy.ravel()返回的是 ...
- python库numpy的reshape的终极解释
a = np.arange(2*4*4) b = a.reshape(1,4,4,2) #应该这样按反序来理解:最后一个2是一个只有2个元素的向量,最后的4,2代表4×2的矩阵,最 ...
- 小白眼中的AI之~Numpy基础
周末码一文,明天见矩阵- 其实Numpy之类的单讲特别没意思,但不稍微说下后面说实际应用又不行,所以大家就练练手吧 代码裤子: https://github.com/lotapp/BaseCode ...
- numpy基本用法
numpy 简介 numpy的存在使得python拥有强大的矩阵计算能力,不亚于matlab. 官方文档(https://docs.scipy.org/doc/numpy-dev/user/quick ...
- numpy快速指南
Quickstart tutorial 引用https://docs.scipy.org/doc/numpy-dev/user/quickstart.html Prerequisites Before ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 3、Python Basics with numpy (optional)
Python Basics with numpy (optional)Welcome to your first (Optional) programming exercise of the deep ...
- Python Basics with Numpy
Welcome to your first assignment. This exercise gives you a brief introduction to Python. Even if yo ...
- Python Basics with numpy (optional)
Python Basics with Numpy (optional assignment) Welcome to your first assignment. This exercise gives ...
随机推荐
- Linux(Ubuntu)通过nfs挂载远程硬盘
需求 现有两台Linux Server,需要把Linux01 下的8T硬盘挂在到 Linux02 下:Linux01 硬盘: Linux02 硬盘: 挂载原理 通过 nfs-server 将Linux ...
- Python语言控制运算的优先级
Python语言碰上计算式同时出现在一个指令内时,除了括号"(".")"最优外,其余计算优先次序如下: 次方(**). 乘法.除法.求余数(%).求整数(//) ...
- vue项目的各个文件作用
vue项目的各个文件作用: build:放置的是webpack配置文件,一般不动,修改了必须重启服务器才能生效 config:放置针对开发环境和线上环境的配置文件,一般不动 修改后需重启 node_m ...
- SSM相关知识梳理面试
- 搜索和浏览离线 Wikipedia 维基百科(中/英)数据工具
为什么使用离线维基百科?一是因为最近英文维基百科被封,无法访问:二是不受网络限制,使用方便,缺点是不能及时更新,可能会有不影响阅读的乱码. 目前,主要有两种工具用来搜索和浏览离线维基百科数据:Kiwi ...
- RabbitMQ基本概念(四)-服务详细配置与日常监控管理
RabbitMQ服务管理 启动服务:rabbitmq-server -detached[ /usr/local/rabbitmq/sbin/rabbitmq-server -detached ] 查看 ...
- Odoo中的模型详解
转载请注明原文地址:https://www.cnblogs.com/ygj0930/p/10826118.html [Odoo中,一切皆模型,连视图都是模型.Odoo将各种数据,如:权限数据.类 ...
- Beta冲刺第2次
二.Scrum部分 1. 各成员情况 翟仕佶 学号:201731103226 今日进展 优化了文件IO 存在问题 无 明日安排 同小小组另两人协商功能改进 截图 曾中杰 学号:201731062517 ...
- python中pop()与split()的用法
imglist = ['11.jpg','12.jpg','13.jpg','14.jpg','2.jpg','1.jpg',] print(str(imglist)) a = str(imglist ...
- P3398 仓鼠找sugar[LCA]
题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而他的基友同时要从他的卧室(c) ...