BZOJ 4555:[TJOI2016&HEOI2016]求和(第二类斯特林数+NTT)
\(Description\)
求
$n<=10^5$
---
$Solution$
$S(i,j)$在这里就非常碍事,怎么把它写成一个多项式的形式呢?
第二类斯特林数还有一种容斥的写法
$$S(n,m)=\frac{1}{m!}\sum_{i=0}^m(-1)^iC_m^i(m-i)^n\]
把它带到要求的式子里去
\]
\]
最后是个等比数列求和
\]
后边的求和直接\(NTT\)做。
#include<complex>
#include<cstdio>
using namespace std;
const int mod=998244353,R=3;
const int N=3e5+7;
int n,invR;
int F[N],G[N],fac[N],finv[N],r[N];
int qread()
{
int x=0;
char ch=getchar();
while(ch<'0' || ch>'9')ch=getchar();
while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x;
}
int Fpow(long long b,int p)
{
long long res=1;
for(;p;p>>=1,b=b*b%mod)
if(p&1)res=res*b%mod;
return res;
}
void NTT(int *a,int lim,int opt)
{
for(int i=1;i<lim;i++)
if(i<r[i])swap(a[i],a[r[i]]);
for(int i=2;i<=lim;i<<=1)
{
int mid=i>>1,Wn=Fpow(~opt?R:invR,(mod-1)/i),t;
for(int j=0;j<lim;j+=i)
{
long long w=1;
for(int k=j;k<j+mid;k++,w=w*Wn%mod)
{
t=1ll*w*a[k+mid]%mod;
a[k+mid]=(a[k]-t+mod)%mod;a[k]=(a[k]+t)%mod;
}
}
}
if(opt==-1)for(int i=0,inv=Fpow(lim,mod-2);i<lim;i++)a[i]=1ll*a[i]*inv%mod;
}
int main()
{
scanf("%d",&n);
fac[0]=finv[0]=1;
for(int i=1;i<=n;i++)
fac[i]=1ll*fac[i-1]*i%mod;
finv[n]=Fpow(fac[n],mod-2);
for(int i=n-1;i;i--)
finv[i]=1ll*finv[i+1]*(i+1)%mod;
for(int i=2;i<=n;i++)
F[i]=1ll*(Fpow(i,n+1)-1)*Fpow(i-1,mod-2)%mod*finv[i]%mod;
F[0]=1;F[1]=n+1;
for(int i=0;i<=n;i++)
G[i]=((i&1?-1:1)*finv[i]+mod)%mod;
int lim=1,l=-1;
invR=Fpow(R,mod-2);
while(lim<=n+n)lim<<=1,l++;
for(int i=1;i<lim;i++)r[i]=(r[i>>1]>>1)|((i&1)<<l);
NTT(F,lim,1);NTT(G,lim,1);
for(int i=0;i<lim;i++)
F[i]=1ll*F[i]*G[i]%mod;
NTT(F,lim,-1);
int ans=0;
for(int i=0,p=1;i<=n;i++,p=(p<<1)%mod)
ans=(ans+1ll*p*fac[i]%mod*F[i]%mod)%mod;
printf("%d\n",ans);
return 0;
}
BZOJ 4555:[TJOI2016&HEOI2016]求和(第二类斯特林数+NTT)的更多相关文章
- bzoj 4555 [Tjoi2016&Heoi2016] 求和 —— 第二类斯特林数+NTT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 关于第二类斯特林数:https://www.cnblogs.com/Wuweizhen ...
- bzoj 5093 图的价值 —— 第二类斯特林数+NTT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 每个点都是等价的,从点的贡献来看,得到式子: \( ans = n * \sum\li ...
- 【BZOJ4555】【TJOI2016】【HEOI2016】求和 第二类斯特林数 NTT
题目大意 求\(f(n)=\sum_{i=0}^n\sum_{j=0}^i2^j\times j!\times S(i,j)\\\) 对\(998244353\)取模 \(n\leq 100000\) ...
- bzoj 4555 [Tjoi2016&Heoi2016]求和 NTT 第二类斯特林数 等比数列求和优化
[Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 679 Solved: 534[Submit][S ...
- bzoj 4555 [Tjoi2016&Heoi2016]求和——NTT+第二类斯特林数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 第二类斯特林数展开式: \( S(i,j) = \frac{1}{j!} \sum\l ...
- P4091 [HEOI2016/TJOI2016]求和(第二类斯特林数+NTT)
传送门 首先,因为在\(j>i\)的时候有\(S(i,j)=0\),所以原式可以写成\[Ans=\sum_{i=0}^n\sum_{j=0}^nS(i,j)\times 2^j\times j! ...
- BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】
题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + ...
- 【BZOJ4555】【TJOI2016】【HEOI2016】求和 (第二类斯特林数+NTT卷积)
Description 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: $$f(n)=\sum_{i=0}^n\sum_{j=0}^i S(i,j)\tim ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
随机推荐
- syntax error near unexpected token 脚本报错误解决
hadoop老师给了一个shell文件,在windows里面瞅了一眼然后在ubuntu环境下运行就报错了.看了一些博客,用vim -b filename查看的时候发现每一行的末尾都多了一个^M.... ...
- 好用的数据库字典查看工具SQLToolbelt
工作中经常为诸多的陌生或没有任何表或者字段说明或者文档庞大数据库和数据库表所烦恼,有以下场景: 1.新进入一家公司,开始接触新的项目,领导给你一大堆文档,在不了解具体逻辑的情况下,除了项目的结构,能让 ...
- C#利用控件mscomm32.ocx读取串口datalogic扫描枪数据
1).开发环境VS12,语言C# 2).扫描枪品牌:datalogic 4470 3).通讯协议:串口 1.首先,第一步创建一个新工程,windows窗体应用程序,命名为TestScanner,如下: ...
- C#生成/调用动态链接库
参考地址:https://www.cnblogs.com/qq4004229/archive/2013/01/30/2882409.html 一.需求描述 (1)用代码生成动态链接库 (2)用C#代码 ...
- 这两个小技巧,让我的SQL语句不仅躲了坑,还提升了1000 倍
原文: https://cloud.tencent.com/developer/article/1465618 本次来讲解与 SQL 查询有关的两个小知识点,掌握这些知识点,能够让你避免踩坑以及提高查 ...
- 笔记:Java Language Specification - 章节17- 线程和锁
回答一个问题:多线程场景下,有时一个线程对shared variable的修改可能对另一个线程不可见.那么,何时一个线程对内存的修改才会对另一个线程可见呢? 基本的原则: 如果 读线程 和 写线程 不 ...
- Java自学-数字与字符串 StringBuffer
Java StringBuffer常见方法 StringBuffer是可变长的字符串 示例 1 : 追加 删除 插入 反转 append追加 delete 删除 insert 插入 reverse 反 ...
- DOM创建节点
1.DOM--document object model 常用的节点类型: 元素节点:(标签) 属性节点:(标签里的属性) 文本节点:(文本节点) 2,document有个属性叫nodetype,返回 ...
- 编写可维护的JavaScript-随笔(三)
UI层的松耦合 本章提出了一个概念就是耦合 假设修改一个组件的时候需要修改很多其他的组件的话则表示组件之间存在紧耦合 如果修改一个组件而不需要修改其他组件的时候就做到了松耦合 页面是由HTML.CSS ...
- HTML 初始
HTML(Hyper Text Markup Language的缩写)中文译为“超文本标记语言”,主要是通过HTML标签对网页中的文本.图片.声音等内容进行描述. 一.HTML 骨架结构 每种语言都有 ...