在打印内容字节数较小时,全部载入内存后,再打印,没有问题。可是,如果现在有成千上百万条车辆行驶轨迹,叫你分析出其中每个客户的出行规律,堵车情况等,假如是在单机上处理这件事。

你可能首先要面临,也可能被你忽视,最后代码都写好后,才可能暴露出的一个问题:outofmemory, 这在实际项目中经常遇到。

其实,Python已经准备好一个模块专门用来处理这件事,它就是 itertools 模块,

1 拼接元素

itertools 中的chain 函数实现元素拼接,原型如下,参数*表示个数可变的参数

chain(iterables)

应用如下:

#int不是可迭代对象,不能当做参数使用
In [22]: list(chain(['I','love'],('python',),'very',{"1":2}))
Out[22]: ['I', 'love', 'python', 'v', 'e', 'r', 'y', '1']

哇,不能再好用了,它有点join的味道,但是比join强,它的重点在于参数都是可迭代的实例。

那么,chain如何实现高效节省内存的呢?chain大概的实现代码如下:

def chain(*iterables):
for it in iterables:
for element in it:
yield element

以上代码不难理解,chain本质返回一个生成器,所以它实际上是一次读入一个元素到内存,所以做到最高效地节省内存。

2 逐个累积

返回列表的累积汇总值,原型:

accumulate(iterable[, func, *, initial=None])

应用如下:

In [36]: list(accumulate([1,2,3,4,5,6],lambda x,y: x*y))
Out[36]: [1, 2, 6, 24, 120, 720]

accumulate大概的实现代码如下:

def accumulate(iterable, func=operator.add, *, initial=None):
it = iter(iterable)
total = initial
if initial is None:
try:
total = next(it)
except StopIteration:
return
yield total
for element in it:
total = func(total, element)
yield total

以上代码,你还好吗?与chain简单的yield不同,此处稍微复杂一点,yield有点像return,所以 yield total那行直接就返回一个元素,也就是iterable的第一个元素,因为任何时候这个函数返回的第一个元素就是它的第一个。又因为yield返回的是一个generator对象,比如名字gen,所以next(gen)时,代码将会执行到 for element in it:这行,而此时的迭代器it 已经指到iterable的第二个元素,OK,相信你懂了!

3 漏斗筛选

它是compress 函数,功能类似于漏斗功能,所以我称它为漏斗筛选,原型:

compress(data, selectors)
In [38]: list(compress('abcdefg',[1,1,0,1]))
Out[38]: ['a', 'b', 'd']

容易看出,compress返回的元素个数等于两个参数中较短的列表长度。

它的大概实现代码:

def compress(data, selectors):
return (d for d, s in zip(data, selectors) if s)

这个函数非常好用

4 段位筛选

扫描列表,不满足条件处开始往后保留,原型如下:

dropwhile(predicate, iterable)

应用例子:

In [39]: list(dropwhile(lambda x: x<3,[1,0,2,4,1,1,3,5,-5]))
Out[39]: [4, 1, 1, 3, 5, -5]

实现它的大概代码如下:

def dropwhile(predicate, iterable):
iterable = iter(iterable)
for x in iterable:
if not predicate(x):
yield x
break
for x in iterable:
yield x

5 段位筛选2

扫描列表,只要满足条件就从可迭代对象中返回元素,直到不满足条件为止,原型如下:

takewhile(predicate, iterable)

应用例子:

In [43]: list(takewhile(lambda x: x<5, [1,4,6,4,1]))
Out[43]: [1, 4]

实现它的大概代码如下:

def takewhile(predicate, iterable):
for x in iterable:
if predicate(x):
yield x
else:
break #立即返回

6 次品筛选

扫描列表,只要不满足条件都保留,原型如下:

dropwhile(predicate, iterable)

应用例子:

In [40]: list(filterfalse(lambda x: x%2==0, [1,2,3,4,5,6]))
Out[40]: [1, 3, 5]

实现它的大概代码如下:

def dropwhile(predicate, iterable):
iterable = iter(iterable)
for x in iterable:
if not predicate(x):
yield x
break
for x in iterable:
yield x

7 切片筛选

Python中的普通切片操作,比如:

lis = [1,3,2,1]
lis[:1]

它们的缺陷还是lis 必须全部载入内存,所以更节省内存的操作islice,原型如下:

islice(iterable, start, stop[, step])

应用例子:

In [41]: list(islice('abcdefg',1,4,2))
Out[41]: ['b', 'd']

实现它的大概代码如下:

def islice(iterable, *args):
s = slice(*args)
start, stop, step = s.start or 0, s.stop or sys.maxsize, s.step or 1
it = iter(range(start, stop, step))
try:
nexti = next(it)
except StopIteration:
for i, element in zip(range(start), iterable):
pass
return
try:
for i, element in enumerate(iterable):
if i == nexti:
yield element
nexti = next(it)
except StopIteration:
for i, element in zip(range(i + 1, stop), iterable):
pass

巧妙利用生成器迭代结束时会抛出异常StopIteration,做一些边界处理的事情。

8 细胞分裂

tee函数类似于我们熟知的细胞分裂,它能复制原迭代器n个,原型如下:

tee(iterable, n=2)

应用如下,可以看出复制出的两个迭代器是独立的

a = tee([1,4,6,4,1],2)
In [51]: next(a[0])
Out[51]: 1 In [52]: next(a[1])
Out[52]: 1

实现它的代码大概如下:

def tee(iterable, n=2):
it = iter(iterable)
deques = [collections.deque() for i in range(n)]
def gen(mydeque):
while True:
if not mydeque:
try:
newval = next(it)
except StopIteration:
return
for d in deques:
d.append(newval)
yield mydeque.popleft()
return tuple(gen(d) for d in deques)

tee 实现内部使用一个队列类型deques,起初生成空队列,向复制出来的每个队列中添加元素newval, 同时yield 当前被调用的mydeque中的最左元素。

9 map变体

starmap可以看做是map的变体,它能更加节省内存,同时iterable的元素必须也为可迭代对象,原型如下:

starmap(function, iterable)

应用它:

In [63]: list(starmap(lambda x,y: str(x)+'-'+str(y), [('a',1),('b',2),('c',3)]))
Out[63]: ['a-1', 'b-2', 'c-3']

starmap的实现细节如下:

def starmap(function, iterable):
for args in iterable:
yield function(*args)

10 复制元素

repeat实现复制元素n次,原型如下:

repeat(object[, times])

应用如下:

In [66]: list(repeat(6,3))
Out[66]: [6, 6, 6] In [67]: list(repeat([1,2,3],2))
Out[67]: [[1, 2, 3], [1, 2, 3]]

它的实现细节大概如下:

def repeat(object, times=None):
if times is None:# 如果times不设置,将一直repeat下去
while True:
yield object
else:
for i in range(times):
yield object

11 笛卡尔积

笛卡尔积实现的效果同下:

 ((x,y) for x in A for y in B)

所以,笛卡尔积的实现效果如下:

In [68]: list(product('ABCD', 'xy'))
Out[68]:
[('A', 'x'),
('A', 'y'),
('B', 'x'),
('B', 'y'),
('C', 'x'),
('C', 'y'),
('D', 'x'),
('D', 'y')]

它的实现细节:

def product(*args, repeat=1):
pools = [tuple(pool) for pool in args] * repeat
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]
for prod in result:
yield tuple(prod)

12 加强版zip

组合值。若可迭代对象的长度未对齐,将根据 fillvalue 填充缺失值,注意:迭代持续到耗光最长的可迭代对象,效果如下:

In [69]: list(zip_longest('ABCD', 'xy', fillvalue='-'))
Out[69]: [('A', 'x'), ('B', 'y'), ('C', '-'), ('D', '-')]

它的实现细节:

def zip_longest(*args, fillvalue=None):
iterators = [iter(it) for it in args]
num_active = len(iterators)
if not num_active:
return
while True:
values = []
for i, it in enumerate(iterators):
try:
value = next(it)
except StopIteration:
num_active -= 1
if not num_active:
return
iterators[i] = repeat(fillvalue)
value = fillvalue
values.append(value)
yield tuple(values)

它里面使用repeat,也就是在可迭代对象的长度未对齐时,根据 fillvalue 填充缺失值。理解上面代码的关键是迭代器对象(iter),next方法的特殊性:

In [74]: for i, it in enumerate([iter([1,2,3]),iter(['x','y'])]):
...: print(next(it))
#输出:
1
x

结合这个提示再理解上面代码,就不会吃力。

摘自公众号菜鸟学Python

itertools 高效的循环的更多相关文章

  1. python中的itertools模块简单使用

    itertools 高效循环下创建循环器的标准库 Infinite itertools,无限迭代器 itertools.count(start=0, step=10) 默认返回一个从0开始,依次+10 ...

  2. Python要点总结,我使用了100个小例子!

  3. 有效提升Python代码性能的三个层面

    使用python进入一个熟练的状态之后就会思考提升代码的性能,尤其是python的执行效率还有很大提升空间(委婉的说法).面对提升效率这个话题,python自身提供了很多高性能模块,很多大牛开发出了高 ...

  4. 认识 Azure

    本文为官网摘录总结

  5. QT QString 很全的使用 (转)

    QString, QByteArray, 和 QVariant这三个类和容器有许多相同之处,并且在一些情况下可以被当作特殊的容器. 同样,像容器,这些类使用隐式共享来优化内存和速度. 我们将从QStr ...

  6. nginx应用总结(1)--基础认识和应用配置

    在linux系统下使用nginx作为web应用服务,用来提升网站访问速度的经验已五年多了,今天在此对nginx的使用做一简单总结. 一.nginx服务简介Nginx是一个高性能的HTTP和反向代理服务 ...

  7. Lotus开发性能优化

    之前也总结过一篇关于性能的文章,地址在http://www.cnblogs.com/carysun/archive/2008/08/09/BasicPerformance.html,今天又看到DW上又 ...

  8. [C和指针]第二部分

    声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...

  9. Nginx介绍

    原文:http://www.aosabook.org/en/nginx.html 作者: Andrew Alexeev nginx(发音"engine x")是俄罗斯软件工程师Ig ...

随机推荐

  1. JavaWeb学习路线图(2020年最新版)

    Java基础 做java开发,java基础是最需要下功夫的一项.在校招时最注重的就是基础,拿不出像样的项目没关系,但是基础万万不可不牢固. 想要基础扎实,看书沉淀是必须的,有一些编程基础的同学推荐阅读 ...

  2. C# 转成金额每三位逗号隔开

    long aaaa = 14200666; Console.WriteLine(aaaa.ToString("N0")); Console.WriteLine(string.For ...

  3. C# 接口、抽象类、以及事件

    接口.抽象类,用于项目集成,如: Interface icls = appid == "A" ? new ClassA() : new ClassA();icls.func(&qu ...

  4. 简约而不简单的Django2.2 新手图文教程

     欢迎大家访问我的个人网站<刘江的博客和教程>www.liujiangblog.com  主要分享Python 及Django教程以及相关的博客! 版权所有,转载需注明来源! 2019年7 ...

  5. 回调、Promise、async-await

    第一章 异步:现在与将来 程序中现在运行的部分和将来运行的部分之间的关系就是异步编程的核心. 场景:等待用户输入.从数据库或文件系统中请求数据.通过网络 发送数据并等待响应,或者是在以固定时间间隔执行 ...

  6. Java 之 多线程

    一.并发与并行 1.并发 指两个或多个事件在同一时间段内发生. 2.并行 指两个或多个事件在同一时刻发生(同时发生). 在操作系统中,安装了多个程序,并发指的是在一段时间内宏观上有多个程序同时运行,这 ...

  7. QT之Qt之Q_PROPERTY宏理解

    在初学Qt的过程中,时不时地要通过F2快捷键来查看QT类的定义,发现类定义中有许多Q_PROPERTY的东西,比如最常用的QWidget的类定义: Qt中的Q_PROPERTY宏在Qt中是很常用的,那 ...

  8. ES6的新特性

    ECMAScript 6(简称ES6)是JavaScript语言的下一代标准.因为当前版本的ES6是在2015年发布的,又称ECMAScript 2015.ES6就是ES2015. 虽然目前并不是所有 ...

  9. memcpy函数的实现

    1.按1个字节拷贝 (1)不要直接使用形参,要转换成char* (2)目标地址要实现保存 (3)要考虑源和目标内存重叠的情况 void * mymemcpy(void *dest, const voi ...

  10. MongoDB分片,唯一索引与upsert

    前言 分片,唯一索引和upsert,表面上看似没有直接联系的几个东西,到底存在怎样的瓜葛呢? 分片 为了保持水平扩展的有效性,分片功能必须保证各个片之间没有直接关联,不需要与其他分片交互就可以独立做出 ...