OpenCV vs. Armadillo vs. Eigen on Linux
OpenCV vs. Armadillo vs. Eigen on Linux
From:http://nghiaho.com/?p=936
In this post I’ll be comparing 3 popular C++ matrix libraries found on Linux.
OpenCV is a large computer vision library with matrix support. Armadillo wraps around LAPACK. Eigen is an interesting library, all the implementation is in the C++ header, much like boost. So it is simple to link into, but takes more time compile.
The 5 matrix operations I’ll be focusing on are: add, multiply, transpose, inversion, SVD. These are the most common functions I use. All the libraries are open source and run on a variety of platforms but I’ll just be comparing them on Ubuntu Linux.
Each of the 5 operations were tested on randomly generated matrices of different size NxN with the average running time recorded.
I was tossing up whether to use a bar chart to display the result but the results span over a very large interval. A log graph would show all the data easily but make numerical comparisons harder. So in the end I opted to show the raw data plus a normalised version to compare relative speed ups. Values highlight in red indicate the best results.
Add
Performing C = A + B
Raw data
| Results in ms | OpenCV | Armadillo | Eigen |
| 4×4 | 0.00098 | 0.00003 | 0.00002 |
| 8×8 | 0.00034 | 0.00006 | 0.00017 |
| 16×16 | 0.00048 | 0.00029 | 0.00077 |
| 32×32 | 0.00142 | 0.00208 | 0.00185 |
| 64×64 | 0.00667 | 0.00647 | 0.00688 |
| 128×128 | 0.02190 | 0.02776 | 0.03318 |
| 256×256 | 0.23900 | 0.27900 | 0.30400 |
| 512×512 | 1.04700 | 1.17600 | 1.33900 |
Normalised
| Speed up over slowest | OpenCV | Armadillo | Eigen |
| 4×4 | 1.00x | 30.53x | 44.41x |
| 8×8 | 1.00x | 5.56x | 2.02x |
| 16×16 | 1.62x | 2.66x | 1.00x |
| 32×32 | 1.46x | 1.00x | 1.12x |
| 64×64 | 1.03x | 1.06x | 1.00x |
| 128×128 | 1.52x | 1.20x | 1.00x |
| 256×256 | 1.27x | 1.09x | 1.00x |
| 512×512 | 1.28x | 1.14x | 1.00x |
The average running time for all 3 libraries are very similar so I would say there is no clear winner here. In the 4×4 case where OpenCV is much slower it might be due to overhead in error checking.
Multiply
Performing C = A * B
Raw data
| Results in ms | OpenCV | Armadillo | Eigen |
| 4×4 | 0.00104 | 0.00007 | 0.00030 |
| 8×8 | 0.00070 | 0.00080 | 0.00268 |
| 16×16 | 0.00402 | 0.00271 | 0.00772 |
| 32×32 | 0.02059 | 0.02104 | 0.02527 |
| 64×64 | 0.14835 | 0.18493 | 0.06987 |
| 128×128 | 1.83967 | 1.10590 | 0.60047 |
| 256×256 | 15.54500 | 9.18000 | 2.65200 |
| 512×512 | 133.32800 | 35.43100 | 21.53300 |
Normalised
| Speed up over slowest | OpenCV | Armadillo | Eigen |
| 4×4 | 1.00x | 16.03x | 3.52x |
| 8×8 | 3.84x | 3.35x | 1.00x |
| 16×16 | 1.92x | 2.84x | 1.00x |
| 32×32 | 1.23x | 1.20x | 1.00x |
| 64×64 | 1.25x | 1.00x | 2.65x |
| 128×128 | 1.00x | 1.66x | 3.06x |
| 256×256 | 1.00x | 1.69x | 5.86x |
| 512×512 | 1.00x | 3.76x | 6.19x |
Average running time for all 3 are similar up to 64×64, where Eigen comes out as the clear winner.
Transpose
Performing C = A^T.
Raw data
| Results in ms | OpenCV | Armadillo | Eigen |
| 4×4 | 0.00029 | 0.00002 | 0.00002 |
| 8×8 | 0.00024 | 0.00007 | 0.00009 |
| 16×16 | 0.00034 | 0.00019 | 0.00028 |
| 32×32 | 0.00071 | 0.00088 | 0.00111 |
| 64×64 | 0.00458 | 0.00591 | 0.00573 |
| 128×128 | 0.01636 | 0.13390 | 0.04576 |
| 256×256 | 0.12200 | 0.77400 | 0.32400 |
| 512×512 | 0.68700 | 3.44700 | 1.17600 |
Normalised
| Speed up over slowest | OpenCV | Armadillo | Eigen |
| 4×4 | 1.00x | 17.00x | 12.57x |
| 8×8 | 1.00x | 3.45x | 2.82x |
| 16×16 | 1.00x | 1.81x | 1.20x |
| 32×32 | 1.56x | 1.26x | 1.00x |
| 64×64 | 1.29x | 1.00x | 1.03x |
| 128×128 | 8.18x | 1.00x | 2.93x |
| 256×256 | 6.34x | 1.00x | 2.39x |
| 512×512 | 5.02x | 1.00x | 2.93x |
Comparable running time up to 64×64, after which OpenCV is the winner by quite a bit. Some clever memory manipulation?
Inversion
Performing C = A^-1
Raw data
| Results in ms | OpenCV | Armadillo | Eigen |
| 4×4 | 0.00189 | 0.00018 | 0.00090 |
| 8×8 | 0.00198 | 0.00414 | 0.00271 |
| 16×16 | 0.01118 | 0.01315 | 0.01149 |
| 32×32 | 0.06602 | 0.05445 | 0.05464 |
| 64×64 | 0.42008 | 0.32378 | 0.30324 |
| 128×128 | 3.67776 | 4.52664 | 2.35105 |
| 256×256 | 35.45200 | 16.41900 | 17.12700 |
| 512×512 | 302.33500 | 122.48600 | 97.62200 |
Normalised
| Speed up over slowest | OpenCV | Armadillo | Eigen |
| 4×4 | 1.00x | 10.22x | 2.09x |
| 8×8 | 2.09x | 1.00x | 1.53x |
| 16×16 | 1.18x | 1.00x | 1.15x |
| 32×32 | 1.00x | 1.21x | 1.21x |
| 64×64 | 1.00x | 1.30x | 1.39x |
| 128×128 | 1.23x | 1.00x | 1.93x |
| 256×256 | 1.00x | 2.16x | 2.07x |
| 512×512 | 1.00x | 2.47x | 3.10x |
Some mix results up until 128×128, where Eigen appears to be better choice.
SVD
Performing [U,S,V] = SVD(A)
Raw data
| Results in ms | OpenCV | Armadillo | Eigen |
| 4×4 | 0.00815 | 0.01752 | 0.00544 |
| 8×8 | 0.01498 | 0.05514 | 0.03522 |
| 16×16 | 0.08335 | 0.17098 | 0.21254 |
| 32×32 | 0.53363 | 0.73960 | 1.21068 |
| 64×64 | 3.51651 | 3.37326 | 6.89069 |
| 128×128 | 25.86869 | 24.34282 | 71.48941 |
| 256×256 | 293.54300 | 226.95800 | 722.12400 |
| 512×512 | 1823.72100 | 1595.14500 | 7747.46800 |
Normalised
| Speed up over slowest | OpenCV | Armadillo | Eigen |
| 4×4 | 2.15x | 1.00x | 3.22x |
| 8×8 | 3.68x | 1.00x | 1.57x |
| 16×16 | 2.55x | 1.24x | 1.00x |
| 32×32 | 2.27x | 1.64x | 1.00x |
| 64×64 | 1.96x | 2.04x | 1.00x |
| 128×128 | 2.76x | 2.94x | 1.00x |
| 256×256 | 2.46x | 3.18x | 1.00x |
| 512×512 | 4.25x | 4.86x | 1.00x |
Looks like OpenCV and Armadillo are the winners, depending on the size of the matrix.
Discussion
With mix results left, right and centre it is hard to come to any definite conclusion. The benchmark itself is very simple. I only focused on square matrices of power of two, comparing execution speed, not accuracy, which is important for SVD.
What’s interesting from the benchmark is the clear difference in speed for some of the operations depending on the matrix size. Since the margins can be large it can have a noticeable impact on your application’s running time. It would be pretty cool if there was a matrix library that could switch between different algorithms depending on the size/operation requested, fine tuned to the machine it is running on. Sort of like what Atlas/Blas does.
So which library is faster? I have no idea, try them all for your application and see ![]()
OpenCV vs. Armadillo vs. Eigen on Linux的更多相关文章
- OpenCV入门笔记(一) Linux下的安装
关于OpenCV,有中文的官方站点.里面翻译了官网的教程和API等.中文官方Tutorials见这里:[Tutorials] 一.Ubuntu下的安装 能够选择直接从库里安装,或者手动编译安装,请參考 ...
- ubuntu 16.04 上编译和安装C++机器学习工具包mlpack并编写mlpack-config.cmake | tutorial to compile and install mplack on ubuntu 16.04
本文首发于个人博客https://kezunlin.me/post/1cd6a04d/,欢迎阅读最新内容! tutorial to compile and install mplack on ubun ...
- OpenCV2学习笔记01:Linux下OpenCV开发环境的搭建
个人已经厌倦了Windows下的开发方式,于是决定转到Linux平台上来,当然我也知道这个转变会很艰辛,但是我还是要坚持.所以,后面的所有开发我都会基于Linux和Qt,先从开发环境的搭建开始做起,当 ...
- opencv Installation in Linux and hello world
http://opencv.org/quickstart.html Installation in Linux These steps have been tested for Ubuntu 10.0 ...
- Qt Opencv 在Linux下摄像头简单示例(转)
下面写的文章也许网上也有类似的,但是大多数都没有给出思路及背景,让初学者每次都只能学到一点皮毛,不少知识需要大量搜索零碎地拼凑起来.题外话,虽然现在是碎片化信息时代,但正是这样信息整合能力也显得非常重 ...
- linux源码编译安装OpenCV
为了尽可能保证OpenCV的特性,使用OpenCV源码编译安装在linux上.先从安装其依赖项开始,以ubuntu 14.04.X为例讲解在Linux上源码编译安装OpenCV,其他linux版本可以 ...
- Ubuntu下编译安装OpenCV 2.4.7并读取摄像头[转]
主要参考: 1.http://www.ozbotz.org/opencv-installation/ 2.http://www.ozbotz.org/opencv-install-troublesho ...
- Linux下配置OpenCV1.0环境
自己一直嚷嚷着打算学学图像识别,识别个简单的,车牌号,验证码之类的,之前查过资料,OpenCV可以实现.昨天花了一个下午终于配置好环境了,今天写下总结. OpenCV这一名称包含了Open和Compu ...
- opencv 61篇
(一)--安装配置.第一个程序 标签: imagebuildincludeinputpathcmd 2011-10-21 16:16 41132人阅读 评论(50) 收藏 举报 分类: OpenCV ...
随机推荐
- 倒计时3天!i春秋四周年盛典狂欢,钜惠不停
六月注定是不平凡的 感恩父亲节 父爱如山亦如海 难忘毕业季 青春无悔不散场 嗨购618 优惠福利送不停 更值得期待的是 在这个不平凡的六月 迎来了i春秋四周年庆典 当周年庆遇到618 会擦出怎样的火花 ...
- UILabel的各种属性和方法
转自:http://liulu200888an.blog.163.com/blog/static/3498972320121214208542/ UILabel *label1 = [[UILabe ...
- 【web后端开发】笔试题收集
4399Web后端开发笔试题 题目来源:牛客网 1.linux中,用mkdir命令创建新的目录时,如果需要在其父目录不存在时先创建父目录的选项是 D A -h B -d C -f D -p [ ...
- python从入门到放弃之进程进阶篇
什么我们得了解清楚什么是进程,进程就是系统分配的一个资源单位,真正在程序中干活得是线程,默认是每个进程中都拥有一个线程 然后我们在了解下什么是进程池这个概念 进程池是的数量是取决于我当前电脑的逻辑处理 ...
- RabbitMQ启动报unknown exchange type 'x-delayed-message'
RabbitMQ延迟队列插件未安装,导致以下问题: ShutdownSignalException: connection error; protocol method: #method<con ...
- JMETER 审批任务实战
业务场景 我们需要对流程任务进行审批,这个和流程发起是不一样的,因为在流程发起时,只需要用户登录后,指定固定的流程方案和数据就可以发起流程了. 流程任务是需要获取任务ID再做任务审批的. 实现思路 1 ...
- 使用BurpSuite做中转代理时候出现Failed to connect to www.xxx.com:443 的时候可能原因
1.可能是BurpSuite没有设置好代理,需要BurpSuite需要进行设置如下图:
- centos7 下面显卡驱动安装
一.安装驱动 屏蔽默认的nouveau cd /lib/modprobe.d/ sudo vim dist-blacklist.conf 将nvidiafb注释掉 #blacklist nvidiaf ...
- devops 下测试组织管理面临的挑战及应对
导读 先从引发的5个问题讲起,再简单回顾一下devops 简介和兴起背景 ,再从itest 测试管理团队的视角提出应对办法 DevOps后,测试面临的挑战 敏捷开发必然是迭代开发管理模式 ...
- 阿里云Web应用防火墙采用规则引擎、语义分析和深度学习引擎相结合的方式防护Web攻击
深度学习引擎最佳实践 {#concept_1113021 .concept} 阿里云Web应用防火墙采用多种Web攻击检测引擎组合的方式为您的网站提供全面防护.Web应用防火墙采用规则引擎.语义分析和 ...