OpenCV vs. Armadillo vs. Eigen on Linux
OpenCV vs. Armadillo vs. Eigen on Linux
From:http://nghiaho.com/?p=936
In this post I’ll be comparing 3 popular C++ matrix libraries found on Linux.
OpenCV is a large computer vision library with matrix support. Armadillo wraps around LAPACK. Eigen is an interesting library, all the implementation is in the C++ header, much like boost. So it is simple to link into, but takes more time compile.
The 5 matrix operations I’ll be focusing on are: add, multiply, transpose, inversion, SVD. These are the most common functions I use. All the libraries are open source and run on a variety of platforms but I’ll just be comparing them on Ubuntu Linux.
Each of the 5 operations were tested on randomly generated matrices of different size NxN with the average running time recorded.
I was tossing up whether to use a bar chart to display the result but the results span over a very large interval. A log graph would show all the data easily but make numerical comparisons harder. So in the end I opted to show the raw data plus a normalised version to compare relative speed ups. Values highlight in red indicate the best results.
Add
Performing C = A + B
Raw data
Results in ms | OpenCV | Armadillo | Eigen |
4×4 | 0.00098 | 0.00003 | 0.00002 |
8×8 | 0.00034 | 0.00006 | 0.00017 |
16×16 | 0.00048 | 0.00029 | 0.00077 |
32×32 | 0.00142 | 0.00208 | 0.00185 |
64×64 | 0.00667 | 0.00647 | 0.00688 |
128×128 | 0.02190 | 0.02776 | 0.03318 |
256×256 | 0.23900 | 0.27900 | 0.30400 |
512×512 | 1.04700 | 1.17600 | 1.33900 |
Normalised
Speed up over slowest | OpenCV | Armadillo | Eigen |
4×4 | 1.00x | 30.53x | 44.41x |
8×8 | 1.00x | 5.56x | 2.02x |
16×16 | 1.62x | 2.66x | 1.00x |
32×32 | 1.46x | 1.00x | 1.12x |
64×64 | 1.03x | 1.06x | 1.00x |
128×128 | 1.52x | 1.20x | 1.00x |
256×256 | 1.27x | 1.09x | 1.00x |
512×512 | 1.28x | 1.14x | 1.00x |
The average running time for all 3 libraries are very similar so I would say there is no clear winner here. In the 4×4 case where OpenCV is much slower it might be due to overhead in error checking.
Multiply
Performing C = A * B
Raw data
Results in ms | OpenCV | Armadillo | Eigen |
4×4 | 0.00104 | 0.00007 | 0.00030 |
8×8 | 0.00070 | 0.00080 | 0.00268 |
16×16 | 0.00402 | 0.00271 | 0.00772 |
32×32 | 0.02059 | 0.02104 | 0.02527 |
64×64 | 0.14835 | 0.18493 | 0.06987 |
128×128 | 1.83967 | 1.10590 | 0.60047 |
256×256 | 15.54500 | 9.18000 | 2.65200 |
512×512 | 133.32800 | 35.43100 | 21.53300 |
Normalised
Speed up over slowest | OpenCV | Armadillo | Eigen |
4×4 | 1.00x | 16.03x | 3.52x |
8×8 | 3.84x | 3.35x | 1.00x |
16×16 | 1.92x | 2.84x | 1.00x |
32×32 | 1.23x | 1.20x | 1.00x |
64×64 | 1.25x | 1.00x | 2.65x |
128×128 | 1.00x | 1.66x | 3.06x |
256×256 | 1.00x | 1.69x | 5.86x |
512×512 | 1.00x | 3.76x | 6.19x |
Average running time for all 3 are similar up to 64×64, where Eigen comes out as the clear winner.
Transpose
Performing C = A^T.
Raw data
Results in ms | OpenCV | Armadillo | Eigen |
4×4 | 0.00029 | 0.00002 | 0.00002 |
8×8 | 0.00024 | 0.00007 | 0.00009 |
16×16 | 0.00034 | 0.00019 | 0.00028 |
32×32 | 0.00071 | 0.00088 | 0.00111 |
64×64 | 0.00458 | 0.00591 | 0.00573 |
128×128 | 0.01636 | 0.13390 | 0.04576 |
256×256 | 0.12200 | 0.77400 | 0.32400 |
512×512 | 0.68700 | 3.44700 | 1.17600 |
Normalised
Speed up over slowest | OpenCV | Armadillo | Eigen |
4×4 | 1.00x | 17.00x | 12.57x |
8×8 | 1.00x | 3.45x | 2.82x |
16×16 | 1.00x | 1.81x | 1.20x |
32×32 | 1.56x | 1.26x | 1.00x |
64×64 | 1.29x | 1.00x | 1.03x |
128×128 | 8.18x | 1.00x | 2.93x |
256×256 | 6.34x | 1.00x | 2.39x |
512×512 | 5.02x | 1.00x | 2.93x |
Comparable running time up to 64×64, after which OpenCV is the winner by quite a bit. Some clever memory manipulation?
Inversion
Performing C = A^-1
Raw data
Results in ms | OpenCV | Armadillo | Eigen |
4×4 | 0.00189 | 0.00018 | 0.00090 |
8×8 | 0.00198 | 0.00414 | 0.00271 |
16×16 | 0.01118 | 0.01315 | 0.01149 |
32×32 | 0.06602 | 0.05445 | 0.05464 |
64×64 | 0.42008 | 0.32378 | 0.30324 |
128×128 | 3.67776 | 4.52664 | 2.35105 |
256×256 | 35.45200 | 16.41900 | 17.12700 |
512×512 | 302.33500 | 122.48600 | 97.62200 |
Normalised
Speed up over slowest | OpenCV | Armadillo | Eigen |
4×4 | 1.00x | 10.22x | 2.09x |
8×8 | 2.09x | 1.00x | 1.53x |
16×16 | 1.18x | 1.00x | 1.15x |
32×32 | 1.00x | 1.21x | 1.21x |
64×64 | 1.00x | 1.30x | 1.39x |
128×128 | 1.23x | 1.00x | 1.93x |
256×256 | 1.00x | 2.16x | 2.07x |
512×512 | 1.00x | 2.47x | 3.10x |
Some mix results up until 128×128, where Eigen appears to be better choice.
SVD
Performing [U,S,V] = SVD(A)
Raw data
Results in ms | OpenCV | Armadillo | Eigen |
4×4 | 0.00815 | 0.01752 | 0.00544 |
8×8 | 0.01498 | 0.05514 | 0.03522 |
16×16 | 0.08335 | 0.17098 | 0.21254 |
32×32 | 0.53363 | 0.73960 | 1.21068 |
64×64 | 3.51651 | 3.37326 | 6.89069 |
128×128 | 25.86869 | 24.34282 | 71.48941 |
256×256 | 293.54300 | 226.95800 | 722.12400 |
512×512 | 1823.72100 | 1595.14500 | 7747.46800 |
Normalised
Speed up over slowest | OpenCV | Armadillo | Eigen |
4×4 | 2.15x | 1.00x | 3.22x |
8×8 | 3.68x | 1.00x | 1.57x |
16×16 | 2.55x | 1.24x | 1.00x |
32×32 | 2.27x | 1.64x | 1.00x |
64×64 | 1.96x | 2.04x | 1.00x |
128×128 | 2.76x | 2.94x | 1.00x |
256×256 | 2.46x | 3.18x | 1.00x |
512×512 | 4.25x | 4.86x | 1.00x |
Looks like OpenCV and Armadillo are the winners, depending on the size of the matrix.
Discussion
With mix results left, right and centre it is hard to come to any definite conclusion. The benchmark itself is very simple. I only focused on square matrices of power of two, comparing execution speed, not accuracy, which is important for SVD.
What’s interesting from the benchmark is the clear difference in speed for some of the operations depending on the matrix size. Since the margins can be large it can have a noticeable impact on your application’s running time. It would be pretty cool if there was a matrix library that could switch between different algorithms depending on the size/operation requested, fine tuned to the machine it is running on. Sort of like what Atlas/Blas does.
So which library is faster? I have no idea, try them all for your application and see
OpenCV vs. Armadillo vs. Eigen on Linux的更多相关文章
- OpenCV入门笔记(一) Linux下的安装
关于OpenCV,有中文的官方站点.里面翻译了官网的教程和API等.中文官方Tutorials见这里:[Tutorials] 一.Ubuntu下的安装 能够选择直接从库里安装,或者手动编译安装,请參考 ...
- ubuntu 16.04 上编译和安装C++机器学习工具包mlpack并编写mlpack-config.cmake | tutorial to compile and install mplack on ubuntu 16.04
本文首发于个人博客https://kezunlin.me/post/1cd6a04d/,欢迎阅读最新内容! tutorial to compile and install mplack on ubun ...
- OpenCV2学习笔记01:Linux下OpenCV开发环境的搭建
个人已经厌倦了Windows下的开发方式,于是决定转到Linux平台上来,当然我也知道这个转变会很艰辛,但是我还是要坚持.所以,后面的所有开发我都会基于Linux和Qt,先从开发环境的搭建开始做起,当 ...
- opencv Installation in Linux and hello world
http://opencv.org/quickstart.html Installation in Linux These steps have been tested for Ubuntu 10.0 ...
- Qt Opencv 在Linux下摄像头简单示例(转)
下面写的文章也许网上也有类似的,但是大多数都没有给出思路及背景,让初学者每次都只能学到一点皮毛,不少知识需要大量搜索零碎地拼凑起来.题外话,虽然现在是碎片化信息时代,但正是这样信息整合能力也显得非常重 ...
- linux源码编译安装OpenCV
为了尽可能保证OpenCV的特性,使用OpenCV源码编译安装在linux上.先从安装其依赖项开始,以ubuntu 14.04.X为例讲解在Linux上源码编译安装OpenCV,其他linux版本可以 ...
- Ubuntu下编译安装OpenCV 2.4.7并读取摄像头[转]
主要参考: 1.http://www.ozbotz.org/opencv-installation/ 2.http://www.ozbotz.org/opencv-install-troublesho ...
- Linux下配置OpenCV1.0环境
自己一直嚷嚷着打算学学图像识别,识别个简单的,车牌号,验证码之类的,之前查过资料,OpenCV可以实现.昨天花了一个下午终于配置好环境了,今天写下总结. OpenCV这一名称包含了Open和Compu ...
- opencv 61篇
(一)--安装配置.第一个程序 标签: imagebuildincludeinputpathcmd 2011-10-21 16:16 41132人阅读 评论(50) 收藏 举报 分类: OpenCV ...
随机推荐
- IIS错误:在唯一密钥属性“fileExtension”设置为“.json”时,无法添加类型为“mimeMap”的重复集合项
在用visual studio 打开一个asp.net mvc 项目时,ctrl+f5运行,发现页面无法加载图片.js.json文件. 按F12查看错误,发现500错误.打开报错的js文件,提示: I ...
- JavaScript HTML DOM 节点
要向HTML DOM添加新元素,必须首先创建元素(元素节点),然后将其附加到现有元素. <!DOCTYPE html> <html> <meta charset=&quo ...
- git使用读书笔记
Normal 0 7.8 磅 0 2 false false false EN-US ZH-CN X-NONE /* Style Definitions */ table.MsoNormalTable ...
- 图解Java数据结构之环形链表
本篇文章介绍数据结构中的环形链表. 介绍 环形链表,类似于单链表,也是一种链式存储结构,环形链表由单链表演化过来.单链表的最后一个结点的链域指向NULL,而环形链表的建立,不要专门的头结点,让最后一个 ...
- jQuery中的index用法与inArray用法
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...
- hashlib(hmac)进阶之client跟server交互
首先我还是要强调不管任何相同的字符串通过hashlib加密之后都会产生相同的32位字符串,这个是日常Web中常用的加密算法如果我的client发送一个请求过来我server接受到后就要对该密码进行判断 ...
- MySQL Tools 之 mysql.server 脚本运用
MySQL distributions on Unix and Unix-like system include a script named mysql.server, which starts t ...
- linux epoll,poll,select
epoll函数用法,还有点poll和select 1,LT的epoll是select和poll函数的改进版. 特点是,读完缓冲区后,如果缓冲区还有内容的话,epoll_wait函数还会返回,直到把缓冲 ...
- Linux中断管理 (1)Linux中断管理机制【转】
转自:https://www.cnblogs.com/arnoldlu/p/8659981.html 目录: <Linux中断管理> <Linux中断管理 (1)Linux中断管理机 ...
- ZAP 代理 Chrome 系统 win10
ZAP 代理原理 如下浏览器,拿Chrome为例,Chrome发出的请求都会先经过 ZAP, 然后再由 ZAP 发往服务器.如下图: Chrome 设置 1. Chrome设置只需要在地址栏输入 ch ...