NTT小结及原根求法
注意
由于蒟蒻实在太弱了~^_^~暂时无法完成证明,仅能写出简单版总结
与FFT的区别
\(NTT\)与\(FFT\)的代码区别就是把单位根换成了原根,从而实现无精度误差与浮点数的巨大常数
原根具有单位根的所有特点,原根是在特定模数下的定义
对于模数\(p\),原根\(g\)满足:\(~_{i=0}^{p-1}g^i (mod~p)\)均不同
用\(type=1,g^{\frac{p-1}{2*mid}};type=-1,\dfrac{1}{g^{\frac{p-1}{2*mid}}}\)代替单位根
最后得到的值除一下\(limit\)
原根
快速求原根:对于模数\(p\)分解质因数,\(p-1=p_1^{k_1}...p_n^{k_n}\),原根\(g\)满足\(~_{i=1}^n g^{\frac{p-1}{p_i}}≠1(mod p)\)
求原根就直接分解\(p-1\),然后\(1\)~\(p\)枚举原根就行,通常原根很小,所以能快速求出
\(w=g^{\frac{p-1}{2*mid}}\)
NTT小结及原根求法的更多相关文章
- 快速数论变换(NTT)小结
NTT 在FFT中,我们需要用到复数,复数虽然很神奇,但是它也有自己的局限性--需要用double类型计算,精度太低 那有没有什么东西能够代替复数且解决精度问题呢? 这个东西,叫原根 原根 阶 若\( ...
- [UOJ86]mx的组合数——NTT+数位DP+原根与指标+卢卡斯定理
题目链接: [UOJ86]mx的组合数 题目大意:给出四个数$p,n,l,r$,对于$\forall 0\le a\le p-1$,求$l\le x\le r,C_{x}^{n}\%p=a$的$x$的 ...
- x^a=b(mod c)求解x在[0,c-1]上解的个数模板+原根求法
/************************************* 求解x^a=b(mod c) x在[0,c-1]上解的个数模板 输入:1e9>=a,b>=1,1e9>= ...
- 【BZOJ3992】【SDOI2015】序列统计 原根 NTT
题目大意 有一个集合\(s\),里面的每个数都\(\geq0\)且\(<m\). 问有多少个长度为\(n\)的数列满足这个数列所有数的乘积模\(m\)为\(x\).答案模\(1004535809 ...
- $NTT$(快速数论变换)
- 概念引入 - 阶 对于$p \in N_+$且$(a, \ p) = 1$,满足$a^r \equiv 1 (mod \ p)$的最小的非负$r$为$a$模$p$意义下的阶,记作$\delta_p ...
- 从傅里叶变换(FFT)到数论变换(NTT)
FFT可以用来计算多项式乘法,但是复数的运算中含有大量的浮点数,精度较低.对于只有整数参与运算的多项式,有时,\(\text{NTT(Number-Theoretic Transform)}\)会是更 ...
- Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...
- DFT/FFT/NTT
在Seal库和HElib库中都用到了NTT技术,用于加快多项式计算,而NTT又是FFT的优化,FFT又来自于DFT,现在具体学习一下这三个技术! 基础概念 名词区分 1.DFT:离散傅立叶变换 2.F ...
- FFT/NTT 总结
本总结主要用于帮助个人理解,讲得不足之处,还请各位看官谅解 FFT 补充知识 \(n\)次单位复根(\(w_n\)): 使得\(z^n=1\)的一类复数,这些复数一共有\(n\)个,它们都分布在复平面 ...
随机推荐
- ZIP压缩与解压
/**//* * Gary Zhang -- cbcye@live.com * www.cbcye.com * www.quicklearn.cn * cbcye.cnblogs.com */ usi ...
- 5_PHP数组_3_数组处理函数及其应用_3_数组指针函数
以下为学习孔祥盛主编的<PHP编程基础与实例教程>(第二版)所做的笔记. 数组指针函数 1. key() 函数 程序: <?php $interests[2] = "mus ...
- 用less查看日志文件
一般程序部署在Linux环境,查看日志时,一般用less满足大部分的需求. 列举.记录最常用的场景,代码以Tomcat日志文件catalna.out为例. 1. > 直接查看文件 less ca ...
- Python——2x和3x的区别汇总
1. 初始解释器编码: 2x:ascii 编码(不自持中文) 3x:unicode编码 推荐全部更换为utf-8 2. 输出方式不同 2x:print ‘你好’2.7版本的两种都支持 3x:print ...
- DELL R730 做raid10
1.服务器开机,在出现下图提示时,同时按着<ctrl >+ < R >键,即可进入配置界面 2.会进入下图 3.按上下键到第一项PERC H730P MINI ,按F2,选择c ...
- php 执行大量sql语句 MySQL server has gone away
php 设置超时时间单位秒 set_time_limit(3600); php 设置内存限制ini_set('memory_limit', '1024M'); mysql服务端接收到的包的大小 ...
- LeetCode - 86、分隔链表
给定一个链表和一个特定值 x,对链表进行分隔,使得所有小于 x 的节点都在大于或等于 x 的节点之前. 你应当保留两个分区中每个节点的初始相对位置. 示例: 输入: head = 1->4-&g ...
- UVA816 Abbott's Revenge (三元组BFS)
题目描述: 输入输出: 输入样例: SAMPLE 3 1 N 3 3 1 1 WL NR * 1 2 WLF NR ER * 1 3 NL ER * 2 1 SL WR NF * 2 2 SL WF ...
- JS之try..catch...
try 测试代码块的错误. catch 语句处理错误. throw 创建并跑出错误. try { //在这里运行代码 抛出错误 }catch(err){ //在这里处理错误 } 实例: <p&g ...
- lomback插件在日志管理方面的应用
由于现在使用日志可以省去在解决bug时候的很多麻烦, lomback为我们提供了很方便的打印日志的管理 @RunWith(SpringRunner.class) @SpringBootTest @Sl ...