NIO

 近期接触了几个产品都触及NIO,要么应用,要么改造项目,听多了也有些了解,但仍然不能真正理解,工期比较赶,还是要潜心下来看看。    

 NIO是什么呢,NOT-BLOCKING IO,不阻塞的IO,字面上理解就是不用排队的IO。原生的BIO存在多个地方的阻塞,如服务端开启的accept(),read(),write(),NIO解决了这些问题吗,其实并不然。经过学习会发现,NIO在阻塞方面只是搞定了IO操作中的部分阻塞问题,将原本必须完全阻塞的读写方法改变为半阻塞方法,开启轮询模式,让复用路由器循环探测读写操作是否完成,如果未完成,线程就要去干别的事情了。

 虽然NIO叫同步非阻塞IO,但是他主要解决的应该是多线程开销问题,更高程度上利用系统资源,至于阻塞问题,只是缓解而已。

NIO之于BIO

 其实我都想直接记录NETTY了,因为大家都想用最先进的东西。但是这中间的实现原理还是挺有趣的,也能方便以后理解NETTY的源码,还是有必要一步一步记录的。

 先上个图,表示一下,概念上明白一下NIO和BIO的不同

  

  可以看到,常规的多线程模式对一个连接都建立一个线程。但是NIO对每一个连接并没有去建立新的线程。BIO对每个连接都建立一个SocketChannel,然后将该对象注册到Selector上面。至于每个连接如何完成各自接下来的工作,只要研究Selector对象就行了。

  打开Selector类,查看类介绍和方法,我蛮贴一下类介绍(慎重打开),有兴趣的真可以看看(没兴趣直接跳过,没有影响)可以很快了解到工作原理:

/**
* A multiplexor of {@link SelectableChannel} objects.
*
* <p> A selector may be created by invoking the {@link #open open} method of
* this class, which will use the system's default {@link
* java.nio.channels.spi.SelectorProvider selector provider} to
* create a new selector. A selector may also be created by invoking the
* {@link java.nio.channels.spi.SelectorProvider#openSelector openSelector}
* method of a custom selector provider. A selector remains open until it is
* closed via its {@link #close close} method.
*
* <a name="ks"></a>
*
* <p> A selectable channel's registration with a selector is represented by a
* {@link SelectionKey} object. A selector maintains three sets of selection
* keys:
*
* <ul>
*
* <li><p> The <i>key set</i> contains the keys representing the current
* channel registrations of this selector. This set is returned by the
* {@link #keys() keys} method. </p></li>
*
* <li><p> The <i>selected-key set</i> is the set of keys such that each
* key's channel was detected to be ready for at least one of the operations
* identified in the key's interest set during a prior selection operation.
* This set is returned by the {@link #selectedKeys() selectedKeys} method.
* The selected-key set is always a subset of the key set. </p></li>
*
* <li><p> The <i>cancelled-key</i> set is the set of keys that have been
* cancelled but whose channels have not yet been deregistered. This set is
* not directly accessible. The cancelled-key set is always a subset of the
* key set. </p></li>
*
* </ul>
*
* <p> All three sets are empty in a newly-created selector.
*
* <p> A key is added to a selector's key set as a side effect of registering a
* channel via the channel's {@link SelectableChannel#register(Selector,int)
* register} method. Cancelled keys are removed from the key set during
* selection operations. The key set itself is not directly modifiable.
*
* <p> A key is added to its selector's cancelled-key set when it is cancelled,
* whether by closing its channel or by invoking its {@link SelectionKey#cancel
* cancel} method. Cancelling a key will cause its channel to be deregistered
* during the next selection operation, at which time the key will removed from
* all of the selector's key sets.
*
* <a name="sks"></a><p> Keys are added to the selected-key set by selection
* operations. A key may be removed directly from the selected-key set by
* invoking the set's {@link java.util.Set#remove(java.lang.Object) remove}
* method or by invoking the {@link java.util.Iterator#remove() remove} method
* of an {@link java.util.Iterator iterator} obtained from the
* set. Keys are never removed from the selected-key set in any other way;
* they are not, in particular, removed as a side effect of selection
* operations. Keys may not be added directly to the selected-key set. </p>
*
*
* <a name="selop"></a>
* <h2>Selection</h2>
*
* <p> During each selection operation, keys may be added to and removed from a
* selector's selected-key set and may be removed from its key and
* cancelled-key sets. Selection is performed by the {@link #select()}, {@link
* #select(long)}, and {@link #selectNow()} methods, and involves three steps:
* </p>
*
* <ol>
*
* <li><p> Each key in the cancelled-key set is removed from each key set of
* which it is a member, and its channel is deregistered. This step leaves
* the cancelled-key set empty. </p></li>
*
* <li><p> The underlying operating system is queried for an update as to the
* readiness of each remaining channel to perform any of the operations
* identified by its key's interest set as of the moment that the selection
* operation began. For a channel that is ready for at least one such
* operation, one of the following two actions is performed: </p>
*
* <ol>
*
* <li><p> If the channel's key is not already in the selected-key set then
* it is added to that set and its ready-operation set is modified to
* identify exactly those operations for which the channel is now reported
* to be ready. Any readiness information previously recorded in the ready
* set is discarded. </p></li>
*
* <li><p> Otherwise the channel's key is already in the selected-key set,
* so its ready-operation set is modified to identify any new operations
* for which the channel is reported to be ready. Any readiness
* information previously recorded in the ready set is preserved; in other
* words, the ready set returned by the underlying system is
* bitwise-disjoined into the key's current ready set. </p></li>
*
* </ol>
*
* If all of the keys in the key set at the start of this step have empty
* interest sets then neither the selected-key set nor any of the keys'
* ready-operation sets will be updated.
*
* <li><p> If any keys were added to the cancelled-key set while step (2) was
* in progress then they are processed as in step (1). </p></li>
*
* </ol>
*
* <p> Whether or not a selection operation blocks to wait for one or more
* channels to become ready, and if so for how long, is the only essential
* difference between the three selection methods. </p>
*
*
* <h2>Concurrency</h2>
*
* <p> Selectors are themselves safe for use by multiple concurrent threads;
* their key sets, however, are not.
*
* <p> The selection operations synchronize on the selector itself, on the key
* set, and on the selected-key set, in that order. They also synchronize on
* the cancelled-key set during steps (1) and (3) above.
*
* <p> Changes made to the interest sets of a selector's keys while a
* selection operation is in progress have no effect upon that operation; they
* will be seen by the next selection operation.
*
* <p> Keys may be cancelled and channels may be closed at any time. Hence the
* presence of a key in one or more of a selector's key sets does not imply
* that the key is valid or that its channel is open. Application code should
* be careful to synchronize and check these conditions as necessary if there
* is any possibility that another thread will cancel a key or close a channel.
*
* <p> A thread blocked in one of the {@link #select()} or {@link
* #select(long)} methods may be interrupted by some other thread in one of
* three ways:
*
* <ul>
*
* <li><p> By invoking the selector's {@link #wakeup wakeup} method,
* </p></li>
*
* <li><p> By invoking the selector's {@link #close close} method, or
* </p></li>
*
* <li><p> By invoking the blocked thread's {@link
* java.lang.Thread#interrupt() interrupt} method, in which case its
* interrupt status will be set and the selector's {@link #wakeup wakeup}
* method will be invoked. </p></li>
*
* </ul>
*
* <p> The {@link #close close} method synchronizes on the selector and all
* three key sets in the same order as in a selection operation.
*
* <a name="ksc"></a>
*
* <p> A selector's key and selected-key sets are not, in general, safe for use
* by multiple concurrent threads. If such a thread might modify one of these
* sets directly then access should be controlled by synchronizing on the set
* itself. The iterators returned by these sets' {@link
* java.util.Set#iterator() iterator} methods are <i>fail-fast:</i> If the set
* is modified after the iterator is created, in any way except by invoking the
* iterator's own {@link java.util.Iterator#remove() remove} method, then a
* {@link java.util.ConcurrentModificationException} will be thrown. </p>
*
*
* @author Mark Reinhold
* @author JSR-51 Expert Group
* @since 1.4
*
* @see SelectableChannel
* @see SelectionKey
*/

  大概在讲什么呢,大概要这么几点

     1.Selector用open()方法创建,当然也有其他办法,比如SelectorProvider类中的provider()方法等;

     2.Selector维护三个数据集,这个很重要。一个是keys set,记录的是注册的Channel所注册的操作,第二个是selected-keys set,记录的是已经探测确认要执行任务的操作,第三个是要取消的操作,cancel-keys set。最后一个集合没有提供访问方法。

     3.选择操作,每一个选择过程都可能伴随着key在set中的进出,有三个方法可供选择操作,select(),select(long),selectNow()。选择操作是否阻塞,以及阻塞多久时间,这是这三个方法的本质区别。

     4.并发性。Selector本身是线程安全的,但是其内在的几个控制set却未必。一个线程如果因为选择操作被阻塞,需要其他Selector唤醒或关闭。线程对于Set的操作需要加锁。

  其实写IO操作或者SOCKET代码的时候,观察线程会经常发现一个问题,很多线程在工作过程中很长时间是处于非就绪状态的。上述其实已经解释了NIO和BIO的差别,他通过不断去查看这些Set可以知道哪些是需要执行的操作,立马执行而不再浪费空间去阻塞。实现上是通过Selector类的selectKeys()获得就绪态的key,然后通过这些key找到对应的channle,执行相应的请求。

  这就是书里说的,BIO是一个连接一个线程,NIO是一个请求一个线程(没有请求,是不会让线程工作的)。

  看到这里,可以明白为什么说BIO能够解决线程扩展的开销问题,他使用线程更加节省,只有在发生请求的时候才工作,而且也降低了线程切换带来的开销,接着要搞明白他为什么称为非阻塞的。这要涉及到channel的概念,继续打开Channel类(慎重打开)

/**
* A nexus for I/O operations.
*
* <p> A channel represents an open connection to an entity such as a hardware
* device, a file, a network socket, or a program component that is capable of
* performing one or more distinct I/O operations, for example reading or
* writing.
*
* <p> A channel is either open or closed. A channel is open upon creation,
* and once closed it remains closed. Once a channel is closed, any attempt to
* invoke an I/O operation upon it will cause a {@link ClosedChannelException}
* to be thrown. Whether or not a channel is open may be tested by invoking
* its {@link #isOpen isOpen} method.
*
* <p> Channels are, in general, intended to be safe for multithreaded access
* as described in the specifications of the interfaces and classes that extend
* and implement this interface.
*
*
* @author Mark Reinhold
* @author JSR-51 Expert Group
* @since 1.4
*/

  大概这么几点:

     1.一个channel代表一个通道,可以是硬件设备,文件,网络,程序元素(FileChannel,DatagramChannel,SocketChannel,ServerSocketChannel)各种通道,而且可以执行多种操作,读和写(这与Stream的操作不相同,String只能执行一项操作,毕竟单向流)

     2.其他特点其实在其他的实现类中有,比如FileChannle中写了channle对于传统IO操作所对应的对Buffer的操作。对于Buffer的研究不是本次记录重点,但是这个概念也比较重要,所以我贴了一位同学的研究成果作为记录: https://blog.csdn.net/dkfajsldfsdfsd/article/details/89225098

BUFFER

  Buffer在NIO中是另一个极其重要的概念,非常关键。在NIO模式下,用户主要与channel与buffer打交道,相对来说与buffer打交道的机会更多一些。Channel相当于是一个双向通道,将后端的数据源如文件、socket等与buffer连接起来。一旦通道建立完成,其它时间则主要与buffer打交道,此时可以把buffer看成是数据源的代理或者是用户与数据源之间的中间商,操作buffer就相当于间接操作数据源,并且操作是非阻塞的。

  Buffer首先是内存中的一块存储空间,当然它不可能只是一块单纯的内存,为了协调数据源与用户,NIO中的buffer封装了一些特有的成员与方法。

Basic Buffer Usage

  使用buffer读写数据,无论是读还是写都涉及四个具体的小步骤,下边分别详细说明。

读操作

  向buffer写入数据。这一步通过调用channel的read()方法实现,例如本文第二节中出现的代码:bytesRead = inChannel.read(buf);,要求channel从它后端的数据源中read出数据并写入buffer,注意channel的非阻塞特性,此时buffer处于写模式。
  调用buffer的flip()方法,实现写模式到读模式的转换,表示用户接下来将从buffer中读数据。
  用户从buffer中将数据读出,例如调用buffer的get()方法等。
  调用buffer的clear()方法,彻底清空buffer中的数据,既使buffer中存在着用户尚未读出来的数据。或者compact()方法,只清空已经读出来的数据,未读出的数据则继续保留并移动到buffer的开始处。假如我们还需要继续从文件读数据,则继续调用channel的read()方法,并循环以上过程,只到在某个条件满足退出循环。

写操作

  用户向buffer中写入或者追加数据,此时buffer处于写模式。
  调用buffer的flip()方法,实现写模式到读模式的转换,表示接下来会要求channel将buffer中数据读出并写入到后端的数据源。
  从buffer中读出数据。这一步通过调用channel的write()方法实现,这要求channel从buffer中读出数据并写入到后端的数据源,注意channel的非阻塞特性。
  用户判断buffer的状态,确认写入的进度,如buffer中的数据有多少已经被channel写入到后端,有多少尚未写入。用户可持续这四个步骤,直到写入全部数据。
  读操作的简单代码可参考第二节。

原理

  要理解buffer如何工作,需要熟悉它的三个属性。

  capacity
  position
  limit
  Capacity表示buffer的容量,容量在创建buffer时指定,它是一成不变的。通过前边的介绍可知,buffer有模式,通过flip()方法可在读、写模式之间切换。模式不同,则position与limit的含义也不同。先看一张图,稍后解释它。

  看一下上图中右边的图,它表示写模式下的buffer。此时,postion代表下一个可以写入的位置,最开始时这个值是0,随着数据的增加position会持续变大。而limit此时与capacity相同,表示position的最大值限制,postion不能超过limit的限制。

  将buffer由写模式切换到读模式后,postion与limit的含义及值均发生变化。postion指向buffer开始的位置,也就是0。而limit则指向写模式下的postion的位置。随着读操作的进行,postion的值增加,但它一定小于limit的值,因为limit及其以后的空间是无效的,还没有写入数据。

  假如再将buffer由读模式切换到写模式,有三种可能。

    如果在读模式下buffer中的数据即没有通过clear()方法彻底清空,也没有通过compact()方法将已经读取的数据清空,则buffer切换回写模式后什么都不会变,相当于没有切换。
    如果在读模式下buffer中的数据通过clear()方法彻底清空,则切换回写模式后,postion将指向0的位置,相当于这是一个空的buffer。
    如果在读模式下buffer中的数据通过调用compact()方法,只是将已经读取过的数据清空。则切换回写模式后,buffer中剩余的未读数据将会向buffer的顶端移动,同时postion的位置也会向顶端方向移动,也就是未读数据仍然保留。

  遗憾的是BIO探索就到此结束了,因为我在实现类中发现了异步的实现类,大概就是传闻的AIO。

AIO之于BIO

  打开该类的实现类,发现有两个类型的channel实现了异步,分别是AsynchronousChannel接口和AysnchronousFileChannel类,再看AsynchronousChannel又会发现有几个类实现了该接口

  顺便看一下AysnchronousFileChannel介绍:

/**
* An asynchronous channel for reading, writing, and manipulating a file.
*
* <p> An asynchronous file channel is created when a file is opened by invoking
* one of the {@link #open open} methods defined by this class. The file contains
* a variable-length sequence of bytes that can be read and written and whose
* current size can be {@link #size() queried}. The size of the file increases
* when bytes are written beyond its current size; the size of the file decreases
* when it is {@link #truncate truncated}.
*
* <p> An asynchronous file channel does not have a <i>current position</i>
* within the file. Instead, the file position is specified to each read and
* write method that initiates asynchronous operations. A {@link CompletionHandler}
* is specified as a parameter and is invoked to consume the result of the I/O
* operation. This class also defines read and write methods that initiate
* asynchronous operations, returning a {@link Future} to represent the pending
* result of the operation. The {@code Future} may be used to check if the
* operation has completed, wait for its completion, and retrieve the result.
*
* <p> In addition to read and write operations, this class defines the
* following operations: </p>
*
* <ul>
*
* <li><p> Updates made to a file may be {@link #force <i>forced
* out</i>} to the underlying storage device, ensuring that data are not
* lost in the event of a system crash. </p></li>
*
* <li><p> A region of a file may be {@link #lock <i>locked</i>} against
* access by other programs. </p></li>
*
* </ul>
*
* <p> An {@code AsynchronousFileChannel} is associated with a thread pool to
* which tasks are submitted to handle I/O events and dispatch to completion
* handlers that consume the results of I/O operations on the channel. The
* completion handler for an I/O operation initiated on a channel is guaranteed
* to be invoked by one of the threads in the thread pool (This ensures that the
* completion handler is run by a thread with the expected <em>identity</em>).
* Where an I/O operation completes immediately, and the initiating thread is
* itself a thread in the thread pool, then the completion handler may be invoked
* directly by the initiating thread. When an {@code AsynchronousFileChannel} is
* created without specifying a thread pool then the channel is associated with
* a system-dependent default thread pool that may be shared with other
* channels. The default thread pool is configured by the system properties
* defined by the {@link AsynchronousChannelGroup} class.
*
* <p> Channels of this type are safe for use by multiple concurrent threads. The
* {@link Channel#close close} method may be invoked at any time, as specified
* by the {@link Channel} interface. This causes all outstanding asynchronous
* operations on the channel to complete with the exception {@link
* AsynchronousCloseException}. Multiple read and write operations may be
* outstanding at the same time. When multiple read and write operations are
* outstanding then the ordering of the I/O operations, and the order that the
* completion handlers are invoked, is not specified; they are not, in particular,
* guaranteed to execute in the order that the operations were initiated. The
* {@link java.nio.ByteBuffer ByteBuffers} used when reading or writing are not
* safe for use by multiple concurrent I/O operations. Furthermore, after an I/O
* operation is initiated then care should be taken to ensure that the buffer is
* not accessed until after the operation has completed.
*
* <p> As with {@link FileChannel}, the view of a file provided by an instance of
* this class is guaranteed to be consistent with other views of the same file
* provided by other instances in the same program. The view provided by an
* instance of this class may or may not, however, be consistent with the views
* seen by other concurrently-running programs due to caching performed by the
* underlying operating system and delays induced by network-filesystem protocols.
* This is true regardless of the language in which these other programs are
* written, and whether they are running on the same machine or on some other
* machine. The exact nature of any such inconsistencies are system-dependent
* and are therefore unspecified.
*
* @since 1.7
*/

  重点大概这么几点

      1.fileChannel打开一个文件后,将读写的工作交给channle对象。

      2.读写操作会返回一个future,这个future将被查询是否完成了工作,这就是异步工作的原理了。

  贴一下两个方法:

  read: public abstract Future<Integer> read(ByteBuffer dst, long position);

  /**
* Reads a sequence of bytes from this channel into the given buffer,
* starting at the given file position.
*
* <p> This method initiates the reading of a sequence of bytes from this
* channel into the given buffer, starting at the given file position. This
* method returns a {@code Future} representing the pending result of the
* operation. The {@code Future}'s {@link Future#get() get} method returns
* the number of bytes read or {@code -1} if the given position is greater
* than or equal to the file's size at the time that the read is attempted.
*
* <p> This method works in the same manner as the {@link
* AsynchronousByteChannel#read(ByteBuffer)} method, except that bytes are
* read starting at the given file position. If the given file position is
* greater than the file's size at the time that the read is attempted then
* no bytes are read.
*
* @param dst
* The buffer into which bytes are to be transferred
* @param position
* The file position at which the transfer is to begin;
* must be non-negative
*
* @return A {@code Future} object representing the pending result
*
* @throws IllegalArgumentException
* If the position is negative or the buffer is read-only
* @throws NonReadableChannelException
* If this channel was not opened for reading
*/
public abstract Future<Integer> read(ByteBuffer dst, long position);

  write:public abstract Future<Integer> wriet(ByteBuffer src, long position);

 /**
* Writes a sequence of bytes to this channel from the given buffer, starting
* at the given file position.
*
* <p> This method initiates the writing of a sequence of bytes to this
* channel from the given buffer, starting at the given file position. The
* method returns a {@code Future} representing the pending result of the
* write operation. The {@code Future}'s {@link Future#get() get} method
* returns the number of bytes written.
*
* <p> This method works in the same manner as the {@link
* AsynchronousByteChannel#write(ByteBuffer)} method, except that bytes are
* written starting at the given file position. If the given position is
* greater than the file's size, at the time that the write is attempted,
* then the file will be grown to accommodate the new bytes; the values of
* any bytes between the previous end-of-file and the newly-written bytes
* are unspecified.
*
* @param src
* The buffer from which bytes are to be transferred
* @param position
* The file position at which the transfer is to begin;
* must be non-negative
*
* @return A {@code Future} object representing the pending result
*
* @throws IllegalArgumentException
* If the position is negative
* @throws NonWritableChannelException
* If this channel was not opened for writing
*/
public abstract Future<Integer> write(ByteBuffer src, long position);

  这两个方法都有另外一个孪生方法,可以传入一个完成时执行的操作,该方法将读写操作全部交予channel。

  AIO是真正的异步模式,线程向系统发起异步IO操作,整个操作的完成都由系统负责。线程可以等待异步IO的完成,然后再执行后续的操作,这个称为“将来式”。另一种是线程发起异步IO时,同时指明当IO异步操作完成时的后续处理,这个是“回调式”。“回调式”需要线程池的配置,当系统完成异步IO后,将线程指定的后续处理当成一个任务提交给线程池,线程池中的线程空闲时提取任务,执行其中的处理。

IO总结

  IO 都是同步阻塞模式,所以需要多线程以实现多任务处理。而 NIO 则是利用了单线程轮询事件的机制,通过高效地定位就绪的 Channel,来决定做什么,仅仅 select 阶段是阻塞的,可以有效避免大量客户端连接时,频繁线程切换带来的问题,应用的扩展能力有了非常大的提高

  但是对AIO来说,则更加进了一步,它不是在IO准备好时再通知线程,而是在IO操作已经完成后,再给线程发出通知。因此AIO是不会阻塞的,此时我们的业务逻辑将变成一个回调函数,等待IO操作完成后,由系统自动触发。

NETTY

  上述讲完NIO和AIO,NETTY也就一步到位算了。

  NETTY是什么,我们一般说到微服务通信,响应式编程的时候会提到它,Netty是一个异步事件驱动的网络应用框架,用于快速开发可维护的高性能服务器和客户端。他实现的原理核心就是NIO。

  到目前为止,我对NETTY的了解其实也很有限,因为涉及到有真正应用NETTY的项目都没有上线,能够直观感受到的时候NETTY对NIO的接口封装之后,使用起来会方便得多。下面先用一张数据流图和一个例子来说明NETTY,至于更详细的学习记录,以后再出。

    

    图片来源:https://www.cnblogs.com/imstudy/p/9908791.html

    图中可以识别出几个关键点:

      1.初始化创建 2 个 NioEventLoopGroup:其中 boosGroup 用于 Accetpt 连接建立事件并分发请求,workerGroup 用于处理 I/O 读写事件和业务逻辑。

      2.NioEventLoopGroup 相当于 1 个事件循环组,这个组里包含多个事件循环 NioEventLoop,每个 NioEventLoop 包含 1 个 Selector 和 1 个事件循环线程。

      每个 Boss NioEventLoop 循环执行的任务包含 3 步:

        1)轮询 Accept 事件;

        2)处理 Accept I/O 事件,与 Client 建立连接,生成 NioSocketChannel,并将 NioSocketChannel 注册到某个 Worker NioEventLoop 的 Selector 上;

        3)处理任务队列中的任务,runAllTasks。任务队列中的任务包括用户调用 eventloop.execute 或 schedule 执行的任务,或者其他线程提交到该 eventloop 的任务。

      每个 Worker NioEventLoop 循环执行的任务包含 3 步:

        1)轮询 Read、Write 事件;

        2)处理 I/O 事件,即 Read、Write 事件,在 NioSocketChannel 可读、可写事件发生时进行处理;

        3)处理任务队列中的任务,runAllTasks。

例子

  最后给一个NETTY的例子,例子来源: https://www.jianshu.com/p/a4e03835921a

  NettyClient.java

/**
* @author 闪电侠
*/
public class NettyClient {
public static void main(String[] args) throws InterruptedException {
Bootstrap bootstrap = new Bootstrap();
NioEventLoopGroup group = new NioEventLoopGroup(); bootstrap.group(group)
.channel(NioSocketChannel.class)
.handler(new ChannelInitializer<Channel>() {
@Override
protected void initChannel(Channel ch) {
ch.pipeline().addLast(new StringEncoder());
}
}); Channel channel = bootstrap.connect("127.0.0.1", 8000).channel(); while (true) {
channel.writeAndFlush(new Date() + ": hello world!");
Thread.sleep(2000);
}
}
}

  NettyServer.java

/**
* @author 闪电侠
*/
public class NettyServer {
public static void main(String[] args) {
ServerBootstrap serverBootstrap = new ServerBootstrap(); NioEventLoopGroup boos = new NioEventLoopGroup();
NioEventLoopGroup worker = new NioEventLoopGroup();
serverBootstrap
.group(boos, worker)
.channel(NioServerSocketChannel.class)
.childHandler(new ChannelInitializer<NioSocketChannel>() {
protected void initChannel(NioSocketChannel ch) {
ch.pipeline().addLast(new StringDecoder());
ch.pipeline().addLast(new SimpleChannelInboundHandler<String>() {
@Override
protected void channelRead0(ChannelHandlerContext ctx, String msg) {
System.out.println(msg);
}
});
}
})
.bind(8000);
}
}

  未完待续...

BIO,NIO,AIO到NETTY的更多相关文章

  1. 【netty】(1)---BIO NIO AIO演变

    BIO NIO AIO演变 Netty是一个提供异步事件驱动的网络应用框架,用以快速开发高性能.高可靠的网络服务器和客户端程序.Netty简化了网络程序的开发,是很多框架和公司都在使用的技术. Net ...

  2. Netty序章之BIO NIO AIO演变

    Netty序章之BIO NIO AIO演变 Netty是一个提供异步事件驱动的网络应用框架,用以快速开发高性能.高可靠的网络服务器和客户端程序.Netty简化了网络程序的开发,是很多框架和公司都在使用 ...

  3. Netty5序章之BIO NIO AIO演变

    Netty5序章之BIO NIO AIO演变 Netty是一个提供异步事件驱动的网络应用框架,用以快速开发高性能.高可靠的网络服务器和客户端程序.Netty简化了网络程序的开发,是很多框架和公司都在使 ...

  4. IO回忆录之怎样过目不忘(BIO/NIO/AIO/Netty)

    有热心的网友加我微信,时不时问我一些技术的或者学习技术的问题.有时候我回微信的时候都是半夜了.但是我很乐意解答他们的问题.因为这些年轻人都是很有上进心的,所以在我心里他们就是很优秀的,我愿意多和努力的 ...

  5. 3. 彤哥说netty系列之Java BIO NIO AIO进化史

    你好,我是彤哥,本篇是netty系列的第三篇. 欢迎来我的公从号彤哥读源码系统地学习源码&架构的知识. 简介 上一章我们介绍了IO的五种模型,实际上Java只支持其中的三种,即BIO/NIO/ ...

  6. I/O模型系列之三:IO通信模型BIO NIO AIO

    一.传统的BIO 网络编程的基本模型是Client/Server模型,也就是两个进程之间进行相互通信,其中服务端提供位置信息(绑定的IP地址和监听端口),客户端通过连接操作向服务端监听的地址发起连接请 ...

  7. BIO,NIO,AIO总结

    熟练掌握 BIO,NIO,AIO 的基本概念以及一些常见问题是你准备面试的过程中不可或缺的一部分,另外这些知识点也是你学习 Netty 的基础. BIO,NIO,AIO 总结 1. BIO (Bloc ...

  8. BIO,NIO,AIO 总结

    BIO,NIO,AIO 总结 Java 中的 BIO.NIO和 AIO 理解为是 Java 语言对操作系统的各种 IO 模型的封装.程序员在使用这些 API 的时候,不需要关心操作系统层面的知识,也不 ...

  9. 一文弄懂-BIO,NIO,AIO

    目录 一文弄懂-BIO,NIO,AIO 1. BIO: 同步阻塞IO模型 2. NIO: 同步非阻塞IO模型(多路复用) 3.Epoll函数详解 4.Redis线程模型 5. AIO: 异步非阻塞IO ...

随机推荐

  1. IIS配置伪静态 集成模式 样式丢失

    最近将一个老网站迁移到新服务器,因为需要做伪静态配置,在网上找了一些教程跟着配置.结果却出现:按照网上教程配置完后将应用程序池模式改为经典模式,然后验证规则就匹配不了.改成集成模式验证规则能匹配但是网 ...

  2. Django之ORM多对多表创建方式,AJAX异步提交,分页器组件等

    MTV与MVC MTV模型: ​ M:模型层(models.py),负责业务对象和数据库关系的映射(ORM) ​ T:模板层(Template),负责如何把页面展示给用户(HTML) ​ V:视图层( ...

  3. centos7.5 安装java11

    jdk的下载地址如下: https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-5066655.html 第一 ...

  4. 后台根据html邮件模板发送邮件

    HTML邮件模板: xxxxxxx 在线模板的方式: String fileName = "http://localhost:8080/xxxxxxx.html"; URL url ...

  5. 如何测试Web服务.3

    -->全文字数:2254,需要占用你几分钟的阅读时间 ,您也可以收藏后,时间充足时再阅读- ->第一节讲了<Web服务基础介绍>,第二节讲了<Web服务测试工具> ...

  6. 项目Beta冲刺随笔集合

    班级:软件工程1916|W 作业:项目Beta冲刺 团队名称:SkyReach 目标:完成项目Beta版本 项目Github地址 评审表 团队博客汇总 队员学号 队员姓名 个人博客地址 备注 2216 ...

  7. windows jenkins dotnet core 自动化构建webapi

    jenkins环境搭建好 注意一下几点: - 需要安装git - 需要安装dotnet core sdk环境 - 遇到这里报错,提示 Repository URL 错误的话,如果确实没有配置错误,重启 ...

  8. A1137 | 录数据查询模拟

    这应该是比较简单的一个模拟题,但是考试的时候花了较长的时间,并且最后一个case没过,丢了6分.这题的通过率不高,可见最后一个case还是有挑战性的. 考试的时候想的是在录数据的时候建立一个[ID]到 ...

  9. 【题解】 洛谷 P2649 游戏预言

    题目: P2649 游戏预言 题意: John和他的好朋基友们在van纸牌游戏.共有\(m\)个人.纸牌有\(n \times m\)张,从\(1--n \times m\)编号.每人有\(n\)张. ...

  10. Technocup 2020 Elimination Round 3题解

    传送门 \(A\) 曲明连sb模拟不会做,拖出去埋了算了 //quming #include<bits/stdc++.h> #define R register #define fi fi ...