代码随想录算法训练营Day36 贪心算法
代码随想录算法训练营
代码随想录算法训练营Day36 贪心算法| 435. 无重叠区间 763.划分字母区间 56. 合并区间
435. 无重叠区间
题目链接:435. 无重叠区间
给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。
注意: 可以认为区间的终点总是大于它的起点。 区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。
示例 1:
- 输入: [ [1,2], [2,3], [3,4], [1,3] ]
- 输出: 1
- 解释: 移除 [1,3] 后,剩下的区间没有重叠。
总体思路
看到本题后肯定要排序,但是究竟是按照右边界排序,还是按照左边界排序呢?
其实都可以。主要就是为了让区间尽可能的重叠。
按照右边界排序,从左向右记录非交叉区间的个数。最后用区间总数减去非交叉区间的个数就是需要移除的区间个数了。
此时问题就是要求非交叉区间的最大个数。
这里记录非交叉区间的个数还是有技巧的,如图
区间,1,2,3,4,5,6都按照右边界排好序。
当确定区间 1 和 区间2 重叠后,如何确定是否与 区间3 也重贴呢?
就是取 区间1 和 区间2 右边界的最小值,因为这个最小值之前的部分一定是 区间1 和区间2 的重合部分,如果这个最小值也触达到区间3,那么说明 区间 1,2,3都是重合的。
接下来就是找大于区间1结束位置的区间,是从区间4开始。那有同学问了为什么不从区间5开始?别忘了已经是按照右边界排序的了。
区间4结束之后,再找到区间6,所以一共记录非交叉区间的个数是三个。
总共区间个数为6,减去非交叉区间的个数3。移除区间的最小数量就是3。
class Solution {
public:
// 按照区间右边界排序
static bool cmp (const vector<int>& a, const vector<int>& b) {
return a[1]<b[1];
}
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
if (intervals.size() == 0) return 0;
sort(intervals.begin(), intervals.end(), cmp);
int count = 1; // 记录非交叉区间的个数
int end = intervals[0][1]; // 记录区间分割点
for (int i = 1; i < intervals.size(); i++) {
if (end <= intervals[i][0]) {
end = intervals[i][1];
count++;
}
}
return intervals.size()-count;
}
}
763.划分字母区间
题目链接:763.划分字母区间
字符串 S 由小写字母组成。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。返回一个表示每个字符串片段的长度的列表。
示例:
- 输入:S = "ababcbacadefegdehijhklij"
- 输出:[9,7,8] 解释: 划分结果为 "ababcbaca", "defegde", "hijhklij"。 每个字母最多出现在一个片段中。 像 "ababcbacadefegde", "hijhklij" 的划分是错误的,因为划分的片段数较少。
提示: - S的长度在[1, 500]之间。
- S只包含小写字母 'a' 到 'z'
总体思路
题目要求同一字母最多出现在一个片段中,那么如何把同一个字母的都圈在同一个区间里呢?
如果没有接触过这种题目的话,还挺有难度的。
在遍历的过程中相当于是要找每一个字母的边界,如果找到之前遍历过的所有字母的最远边界,说明这个边界就是分割点了。此时前面出现过所有字母,最远也就到这个边界了。
可以分为如下两步:
- 统计每一个字符最后出现的位置
- 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点
如图:
class Solution {
public:
vector<int> partitionLabels(string S) {
int hash[27] = {0}; // i为字符,hash[i]为字符出现的最后位置
for (int i = 0; i < S.size(); i++) { // 统计每一个字符最后出现的位置
hash[S[i] - 'a'] = i;//S[i]-'a'指每个字母的位置
}
vector<int> result;
int left = 0;
int right = 0;
for (int i = 0; i < S.size(); i++) {
right = max(right, hash[S[i] - 'a']); // 找到字符出现的最远边界
if (i == right) {
result.push_back(right - left + 1);
left = i + 1;
}
}
return result;
}
};
56. 合并区间
题目链接:56. 合并区间
给出一个区间的集合,请合并所有重叠的区间。
示例 1:
- 输入: intervals = [[1,3],[2,6],[8,10],[15,18]]
- 输出: [[1,6],[8,10],[15,18]]
- 解释: 区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].
总体思路
本题的本质其实还是判断重叠区间问题。
这几道题都是判断区间重叠,区别就是判断区间重叠后的逻辑,本题是判断区间重贴后要进行区间合并。
所以一样的套路,先排序,让所有的相邻区间尽可能的重叠在一起,按左边界,或者右边界排序都可以,处理逻辑稍有不同。
按照左边界从小到大排序之后,如果 intervals[i][0] <= intervals[i - 1][1] 即intervals[i]的左边界 <= intervals[i - 1]的右边界,则一定有重叠。(本题相邻区间也算重贴,所以是<=)
其实就是用合并区间后左边界和右边界,作为一个新的区间,加入到result数组里就可以了。如果没有合并就把原区间加入到result数组。
class Solution {
public:
vector<vector<int>> merge(vector<vector<int>>& intervals) {
vector<vector<int>> result;
if (intervals.size() == 0) return result; // 区间集合为空直接返回
// 排序的参数使用了lambda表达式
sort(intervals.begin(), intervals.end(), [](const vector<int>& a, const vector<int>& b){return a[0] < b[0];});
// 第一个区间就可以放进结果集里,后面如果重叠,在result上直接合并
result.push_back(intervals[0]);
for (int i = 1; i < intervals.size(); i++) {
if (result.back()[1] >= intervals[i][0]) { // 发现重叠区间
// 合并区间,只更新右边界就好,因为result.back()的左边界一定是最小值,因为我们按照左边界排序的
result.back()[1] = max(result.back()[1], intervals[i][1]);
} else {
result.push_back(intervals[i]); // 区间不重叠
}
}
return result;
}
};
代码随想录算法训练营Day36 贪心算法的更多相关文章
- #C++初学记录(贪心算法#结构体#贪心算法)
贪心算法#结构体 Problem Description "今年暑假不AC?" "是的." "那你干什么呢?" "看世界杯呀,笨蛋 ...
- 正則表達式re中的贪心算法和非贪心算法 在python中的应用
之前写了一篇有关正則表達式的文章.主要是介绍了正則表達式中通配符 转义字符 字符集 选择符和子模式 可选项和反复子模式 字符串的開始和结尾 ,有兴趣的能够查看博客内容. 此文章主要内容将要介绍re中的 ...
- js算法初窥05(算法模式02-动态规划与贪心算法)
在前面的文章中(js算法初窥02(排序算法02-归并.快速以及堆排)我们学习了如何用分治法来实现归并排序,那么动态规划跟分治法有点类似,但是分治法是把问题分解成互相独立的子问题,最后组合它们的结果,而 ...
- 基于贪心算法求解TSP问题(JAVA)
概述 前段时间在搞贪心算法,为了举例,故拿TSP来开刀,写了段求解算法代码以便有需之人,注意代码考虑可读性从最容易理解角度写,没有优化,有需要可以自行优化! 详细 代码下载:http://www.de ...
- JavaScript算法模式——动态规划和贪心算法
动态规划 动态规划(Dynamic Programming,DP)是一种将复杂问题分解成更小的子问题来解决的优化算法.下面有一些用动态规划来解决实际问题的算法: 最少硬币找零 给定一组硬币的面额,以及 ...
- python常用算法(6)——贪心算法,欧几里得算法
1,贪心算法 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的的时在某种意义上的局部最优解. 贪心算法并不保证会得到最优解,但 ...
- 贪心算法(Java)
贪心算法 文章目录 贪心算法 0.写在前面 1.贪心算法的基本要素 1.1 贪心选择性质 1.2 最优子结构性质 1.3 贪心算法与动态规划算法的差异 2.贪心算法的特点 3.贪心法的正确性证明 4. ...
- 贪心算法(Greedy Algorithm)
参考: 五大常用算法之三:贪心算法 算法系列:贪心算法 贪心算法详解 从零开始学贪心算法 一.基本概念: 所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以 ...
- Java 算法(一)贪心算法
Java 算法(一)贪心算法 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 一.贪心算法 什么是贪心算法?是指在对问题进行求 ...
- [经典贪心算法]Prim算法
最小生成树的Prim算法也是贪心算法的一大经典应用.Prim算法的特点是时刻维护一棵树,算法不断加边,加的过程始终是一棵树. Prim算法过程: 一条边一条边地加, 维护一棵树. 初始 E = {}空 ...
随机推荐
- Go语言 :使用简单的 for 迭代语句进行 TDD 驱动测试开发与 benchmark 基准测试
前提准备与运行环境请参考:(新手向)在Linux中使用VScode编写 "Hello,world"程序,并编写测试-Ubuntu20.4 在 Go 中 for 用来循环和迭代, ...
- Nacos 实现 AP+CP原理[Raft 算法 NO]
来源于网络 一.什么是 Raft算法 Raft 适用于一个管理日志一致性的协议,相比于 Paxos 协议 Raft 更易于理解和去实现它.为了提高理解性,Raft 将一致性算法分为了几个部分,包括领导 ...
- 详解DDD:如何避免写流水账代码?
在日常工作中我观察到,面对老系统重构和迁移场景,有大量代码属于流水账代码,通常能看到开发在对外的API接口里直接写业务逻辑代码,或者在一个服务里大量的堆接口,导致业务逻辑实际无法收敛,接口复用性比较差 ...
- 设计模式(二十八)----综合应用-自定义Spring框架-Spring简单回顾
1 spring使用回顾 自定义spring框架前,先回顾一下spring框架的使用,从而分析spring的核心,并对核心功能进行模拟. 数据访问层.定义UserDao接口及其子实现类 public ...
- jason数组实现页面
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- buuctf-RE-SimpleRev
IDA 打开 将main函数反编译为C代码 1 int __cdecl __noreturn main(int argc, const char **argv, const char **envp) ...
- ChatGPT推荐最常用的自动化测试、性能、安全测试工具!
ChatGPT是一种当前被广泛关注的人工智能技术,它具备生成自然语言的能力,能够完成一些简单的文本生成.对话交互等任务.ChatGPT 算法的出现,打破了以前自然语言处理的瓶颈,使得机器具备了更加贴合 ...
- 数据挖掘系统聚类—R实现
系统聚类法 聚类就是按照某个特定标准把一个数据集分割成不同的类或簇,最后的结果是希望同类之间的差异性尽可能小,不同类之间的差异性尽可能大.不同的类具有能够表达异于其他类的指标,这样针对不同的类,后续就 ...
- Ansible 安装并简单使用
Ansible 简介 Ansible 是一款 IT 自动化工具.主要应用场景有配置系统.软件部署.持续发布及不停服平滑滚动更新的高级任务编排. Ansible 本身非常简单易用,同时注重安全和可靠性, ...
- [Web Server]Tomcat调优之SpringBoot内嵌Tomcat源码分析
以springboot:2.3.12.RELEASE中内嵌的tomcat-embed-core:9.0.46为例,进行分析 1 概述 1.0 关键依赖包 spring-boot-autoconfigu ...