代码随想录算法训练营

代码随想录算法训练营Day36 贪心算法| 435. 无重叠区间 763.划分字母区间 56. 合并区间

435. 无重叠区间

题目链接:435. 无重叠区间

给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。

注意: 可以认为区间的终点总是大于它的起点。 区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。

示例 1:

  • 输入: [ [1,2], [2,3], [3,4], [1,3] ]
  • 输出: 1
  • 解释: 移除 [1,3] 后,剩下的区间没有重叠。

总体思路

看到本题后肯定要排序,但是究竟是按照右边界排序,还是按照左边界排序呢?

其实都可以。主要就是为了让区间尽可能的重叠。

按照右边界排序,从左向右记录非交叉区间的个数。最后用区间总数减去非交叉区间的个数就是需要移除的区间个数了

此时问题就是要求非交叉区间的最大个数。

这里记录非交叉区间的个数还是有技巧的,如图



区间,1,2,3,4,5,6都按照右边界排好序。

当确定区间 1 和 区间2 重叠后,如何确定是否与 区间3 也重贴呢?

就是取 区间1 和 区间2 右边界的最小值,因为这个最小值之前的部分一定是 区间1 和区间2 的重合部分,如果这个最小值也触达到区间3,那么说明 区间 1,2,3都是重合的。

接下来就是找大于区间1结束位置的区间,是从区间4开始。那有同学问了为什么不从区间5开始?别忘了已经是按照右边界排序的了

区间4结束之后,再找到区间6,所以一共记录非交叉区间的个数是三个。

总共区间个数为6,减去非交叉区间的个数3。移除区间的最小数量就是3。

class Solution {
public:
// 按照区间右边界排序
static bool cmp (const vector<int>& a, const vector<int>& b) {
return a[1]<b[1];
}
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
if (intervals.size() == 0) return 0;
sort(intervals.begin(), intervals.end(), cmp);
int count = 1; // 记录非交叉区间的个数
int end = intervals[0][1]; // 记录区间分割点
for (int i = 1; i < intervals.size(); i++) {
if (end <= intervals[i][0]) {
end = intervals[i][1];
count++;
}
}
return intervals.size()-count;
}
}

763.划分字母区间

题目链接:763.划分字母区间

字符串 S 由小写字母组成。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。返回一个表示每个字符串片段的长度的列表。

示例:

  • 输入:S = "ababcbacadefegdehijhklij"
  • 输出:[9,7,8] 解释: 划分结果为 "ababcbaca", "defegde", "hijhklij"。 每个字母最多出现在一个片段中。 像 "ababcbacadefegde", "hijhklij" 的划分是错误的,因为划分的片段数较少。

    提示:
  • S的长度在[1, 500]之间。
  • S只包含小写字母 'a' 到 'z'

总体思路

题目要求同一字母最多出现在一个片段中,那么如何把同一个字母的都圈在同一个区间里呢?

如果没有接触过这种题目的话,还挺有难度的。

在遍历的过程中相当于是要找每一个字母的边界,如果找到之前遍历过的所有字母的最远边界,说明这个边界就是分割点了。此时前面出现过所有字母,最远也就到这个边界了。

可以分为如下两步:

  • 统计每一个字符最后出现的位置
  • 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点

    如图:

class Solution {
public:
vector<int> partitionLabels(string S) {
int hash[27] = {0}; // i为字符,hash[i]为字符出现的最后位置
for (int i = 0; i < S.size(); i++) { // 统计每一个字符最后出现的位置
hash[S[i] - 'a'] = i;//S[i]-'a'指每个字母的位置
}
vector<int> result;
int left = 0;
int right = 0;
for (int i = 0; i < S.size(); i++) {
right = max(right, hash[S[i] - 'a']); // 找到字符出现的最远边界
if (i == right) {
result.push_back(right - left + 1);
left = i + 1;
}
}
return result;
}
};

56. 合并区间

题目链接:56. 合并区间

给出一个区间的集合,请合并所有重叠的区间。

示例 1:

  • 输入: intervals = [[1,3],[2,6],[8,10],[15,18]]
  • 输出: [[1,6],[8,10],[15,18]]
  • 解释: 区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].

总体思路

本题的本质其实还是判断重叠区间问题。

这几道题都是判断区间重叠,区别就是判断区间重叠后的逻辑,本题是判断区间重贴后要进行区间合并。

所以一样的套路,先排序,让所有的相邻区间尽可能的重叠在一起,按左边界,或者右边界排序都可以,处理逻辑稍有不同。

按照左边界从小到大排序之后,如果 intervals[i][0] <= intervals[i - 1][1] 即intervals[i]的左边界 <= intervals[i - 1]的右边界,则一定有重叠。(本题相邻区间也算重贴,所以是<=)



其实就是用合并区间后左边界和右边界,作为一个新的区间,加入到result数组里就可以了。如果没有合并就把原区间加入到result数组。

class Solution {
public:
vector<vector<int>> merge(vector<vector<int>>& intervals) {
vector<vector<int>> result;
if (intervals.size() == 0) return result; // 区间集合为空直接返回
// 排序的参数使用了lambda表达式
sort(intervals.begin(), intervals.end(), [](const vector<int>& a, const vector<int>& b){return a[0] < b[0];}); // 第一个区间就可以放进结果集里,后面如果重叠,在result上直接合并
result.push_back(intervals[0]); for (int i = 1; i < intervals.size(); i++) {
if (result.back()[1] >= intervals[i][0]) { // 发现重叠区间
// 合并区间,只更新右边界就好,因为result.back()的左边界一定是最小值,因为我们按照左边界排序的
result.back()[1] = max(result.back()[1], intervals[i][1]);
} else {
result.push_back(intervals[i]); // 区间不重叠
}
}
return result;
}
};

代码随想录算法训练营Day36 贪心算法的更多相关文章

  1. #C++初学记录(贪心算法#结构体#贪心算法)

    贪心算法#结构体 Problem Description "今年暑假不AC?" "是的." "那你干什么呢?" "看世界杯呀,笨蛋 ...

  2. 正則表達式re中的贪心算法和非贪心算法 在python中的应用

    之前写了一篇有关正則表達式的文章.主要是介绍了正則表達式中通配符 转义字符 字符集 选择符和子模式 可选项和反复子模式 字符串的開始和结尾 ,有兴趣的能够查看博客内容. 此文章主要内容将要介绍re中的 ...

  3. js算法初窥05(算法模式02-动态规划与贪心算法)

    在前面的文章中(js算法初窥02(排序算法02-归并.快速以及堆排)我们学习了如何用分治法来实现归并排序,那么动态规划跟分治法有点类似,但是分治法是把问题分解成互相独立的子问题,最后组合它们的结果,而 ...

  4. 基于贪心算法求解TSP问题(JAVA)

    概述 前段时间在搞贪心算法,为了举例,故拿TSP来开刀,写了段求解算法代码以便有需之人,注意代码考虑可读性从最容易理解角度写,没有优化,有需要可以自行优化! 详细 代码下载:http://www.de ...

  5. JavaScript算法模式——动态规划和贪心算法

    动态规划 动态规划(Dynamic Programming,DP)是一种将复杂问题分解成更小的子问题来解决的优化算法.下面有一些用动态规划来解决实际问题的算法: 最少硬币找零 给定一组硬币的面额,以及 ...

  6. python常用算法(6)——贪心算法,欧几里得算法

    1,贪心算法 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的的时在某种意义上的局部最优解. 贪心算法并不保证会得到最优解,但 ...

  7. 贪心算法(Java)

    贪心算法 文章目录 贪心算法 0.写在前面 1.贪心算法的基本要素 1.1 贪心选择性质 1.2 最优子结构性质 1.3 贪心算法与动态规划算法的差异 2.贪心算法的特点 3.贪心法的正确性证明 4. ...

  8. 贪心算法(Greedy Algorithm)

    参考: 五大常用算法之三:贪心算法 算法系列:贪心算法 贪心算法详解 从零开始学贪心算法 一.基本概念: 所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以 ...

  9. Java 算法(一)贪心算法

    Java 算法(一)贪心算法 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 一.贪心算法 什么是贪心算法?是指在对问题进行求 ...

  10. [经典贪心算法]Prim算法

    最小生成树的Prim算法也是贪心算法的一大经典应用.Prim算法的特点是时刻维护一棵树,算法不断加边,加的过程始终是一棵树. Prim算法过程: 一条边一条边地加, 维护一棵树. 初始 E = {}空 ...

随机推荐

  1. day06-静态资源访问&Rest风格

    SpringBoot之静态资源访问&REST风格请求 1.SpringBoot静态资源访问 1.1基本介绍 只要静态资源是放在类路径下的:/static./public./resources. ...

  2. 什么是UV贴图和展开?

    转载:https://baijiahao.baidu.com/s?id=1673723122020029798&wfr=spider&for=pc UV贴图是用于轻松包装纹理的3D模型 ...

  3. 手把手带你从0完成医疗行业影像图像检测三大经典模型InceptionV3-RestNet50-VGG16(附python源代码及数据库)——改变世界经典人工智能项目实战(一)手把手教学迁移学习

    目录 1.迁移学习简介 2.项目简介 3.糖尿病视网膜病变数据集 4.考虑类别不平衡问题 5.定义模型质量 6.定义损失函数 7.预处理图像 8.搭建迁移学习网络 VGG16 迁移学习网络 Incep ...

  4. Node.js爬取百度图片瀑布流,使用class类封装。

    //爬取百度高清图片 const phantom = require('phantom') const express = require('express'); const app = expres ...

  5. 团队如何选择合适的Git分支策略?

    现代软件开发过程中要实现高效的团队协作,需要使用代码分支管理工具实现代码的共享.追溯.回滚及维护等功能.目前流行的代码管理工具,包括CVS,SVN,Git,Mercurial等. 相比CVS和SVN的 ...

  6. Apache Hudi 0.9.0版本重磅发布!更强大的流式数据湖平台

    1. 重点特性 1.1 Spark SQL支持 0.9.0 添加了对使用 Spark SQL 的 DDL/DML 的支持,朝着使所有角色(非工程师.分析师等)更容易访问和操作 Hudi 迈出了一大步. ...

  7. [网络/Linux]网络嗅探工具——nmap

    1 nmap 简介 Nmap 即 Network Mapper,最早是Linux下的网络扫描和嗅探工具包. nmap是网络扫描和主机检测的工具,用nmap进行信息收集和检测漏洞,功能有: 检测存活主机 ...

  8. WAL模块主要方法简述

    Method---wal.go Description func Create(lg *zap.Logger, dirpath string, metadata []byte) (*WAL, erro ...

  9. 2.自定义@Excel注解实现数据Excel形式导入导出

    前言 这几天在学习如何使用自定义注解实现Excel格式数据导入导出,参考的还是若依框架里面的代码,由于是初学,所以照猫画虎呗,但是难受的是需要复制并根据自己项目修改作者自定义的工具类以及导入这些工具类 ...

  10. 【LeetCode动态规划#06】分割等和子集(01背包问题一维写法实战)

    分割等和子集 分割等和子集 给你一个 只包含正整数 的 非空 数组 nums .请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等. 示例 1: 输入:nums = [1,5,11,5 ...