Flink提供了不同的状态存储方式,并说明了状态如何存和存储在哪里。

状态可以被存储在Jvm的堆和堆外。根据状态存储方式的不同,Flink也能代替应用管理状态,意思是Flink能够进行内存管理(有必要的时候,可能会溢出到硬盘),允许应用保存非常大的状态。默认情况下,在配置文件flink-conf.yaml中为所有Flink作业配置状态存储方式。

然而,默认的状态存储方式配置可以被单独的作业设置覆盖,就像下面那样。

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStateBackend(...);

使用Data Stream API写的程序经常需要以多种情况保存状态:

  • 在窗口被触发之前, 窗口需要保存或聚合元素
  • 转换算子也许会使用key/value状态接口保存数据
  • 转换算子也许实现CheckpointedFunction接口使本地变量容错。

当checkpointing被激活的时候,一旦发生checkpoint,状态会被保存,这样数据就不会丢失,并且在恢复的时候能够保持数据一致性。状态在内部是怎么表示的,以及当checkpoint的时候,状态怎么样被保存,以及保存到哪里依赖选择的状态存储方式。

Flink提供了三种开箱即用的状态存储方式:

  • MemoryStateBackend 内存存储
  • FsStateBackend 文件系统存储
  • RocksDBStateBackend RocksDB存储

如果没有特殊配置,系统默认使用内存存储方式。

MemoryStateBackend 内存存储

内存存储:在Java堆中保存状态对象。Key/Value状态和窗口算子都会以Hash表的方式保存状态值,触发器等。

当checkpoint的时候,状态存储将会快照状态,将当checkpoint向JobManager发送回执消息时,作为消息的一部分发给JobManager(master),JobManager会将状态存储到堆内存中。

可以配置内存存储使用异步快照。我们也强烈推荐使用异步快照,避免阻塞流处理通道。请注意默认是打开异步快照的。如果想要关闭这个特性,用户可以在实现化MemoryStateBackend对象的时候,给构造函数中相应的boolean参数传false(这应该仅用于调试目的)。

new MemoryStateBackend(MAX_MEM_STATE_SIZE, false);

内存存储有如下限制:

  • 每一个状态大小默认不超过5M。这个值可以在实例化MemoryStateBackend的时候增加
  • 不管配置的最大状态大小是多少,状态大小不能超过akka配置的桢(一次RPC传输的数据)大小(参数: akka.framesize,默认:10M)。
  • 聚合的状态必须适合JobMaanger内存

以下情况推荐使用内存存储

  • 本地开发或调用
  • 只保存少量状态的作业。例如仅仅包含一次一条记录算子(例如:Map,FlatMap,Fliter,....)的作业。对于这样的作业,Kafka Consumer 仅仅需要非常少的状态。

FsStateBackend 文件系统存储

通过配置文件系统的URL(类型,地址,路径)使用文件系统存储。例如"hdfs://namenode:40010/flink/checkpoints"或者"file:///data/flink/checkpoints"

FsStateBackend 将状态数据保存在TaskManager’s 内存中。当checkpoint的时候,将状态数据写到配置的文件系统或目录中。最小的元数据会存储到JobManager内存中(或者在HA模式下,存储到checkpoint元数据中).

FsStateBackend 默认使用异步快照,以避免阻塞流处理。如果想禁止该特性,在实现化FsStateBackend对象的时候,构造函数中应的参数传入false即可。

new FsStateBackend(path, false);

以下情况,推荐使用FsStateBackend

  • 具有大状态,长窗口,大的key/value状态的作业
  • 所有HA模式下

RocksDBStateBackend RocksDB存储

要想使用RocksDB存储,需要配置文件系统的URL(类型,地址,路径)。例如"hdfs://namenode:40010/flink/checkpoints"或者"file:///data/flink/checkpoints"

RocksDBStateBackend 将状态数据保存到RocksDB数据库.RocksDB文件默认会存储到TaskManager的数据目录中。当checkpoint的时候,整个RocksDB数据库将会保存到配置的文件系统或目录中。最小的元数据会存储到JobManager内存中(或者在HA模式下,存储到checkpoint元数据中).

RocksDBStateBackend 总是执行异步快照。

RocksDBStateBackend 具有如下限制:

  • 由于 RocksDB JNI通信使用的API基于byte[],每个key或每个value最大支持2^31字节。

    注意: 在以RocksDB作用存储情况下,使用merge操作的状态(例如:ListState)会默默地将值大小累加到大于2^31字节,当再次读取的时候会失败,这是目前RocksDB JNI的限制。

以下情况,推荐使用RocksDBStateBackend

  • 具有非常大的状态,长窗口,大的key/value状态的作业
  • 所有HA模式下

你可以保存的状态数据量仅仅受限于磁盘剩余空间大小。与将状态保存到内存中的``FsStateBackend `相比,可以保存更大的状态。然而这也意味着能达到的最大吞吐量更小。因为所有从rocksDB读或写入rocksDB都需要经过序列化与反序例化,比那些基于Java堆的存储后端开销更大。

RocksDBStateBackend 是目前唯一提供 增量的checkpoint的存储。

RocksDB的一些指标可以被获取,但是默认没打开,可以在这里找到全部文档说明。

配置状态存储

如果你什么也没配置,默认的状态存储在JobManager内存中。如果你希望为所有作业默认一个其它的存储,你可以在flink-conf.ymal中配置其它的存储。当然,每一个作业也能单独设置存储。

每个作业单独设置存储

下面示例显示StreamExecutionEnvironment 的作业如何设置存储。

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStateBackend(new FsStateBackend("hdfs://namenode:40010/flink/checkpoints"));

如果你想使用 RocksDBStateBackend ,你就必须在你的Flink项目中添加如下Maven依赖。

<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-statebackend-rocksdb_2.11</artifactId>
<version>1.8.0</version>
</dependency>

设置默认的状态存储

默认的状态存储能够在flink-conf.yaml文件中配置,参数是state.backend. 值可以选择jobmanager(MemoryStateBackend), filesystem(FsStateBackend),rocksdb(RocksDBStateBackend)三者中的一个,也可以配置实现了接口StateBackendFactory的全类名。例如: RocksDBStateBackend 的实现类 org.apache.flink.contrib.streaming.state.RocksDBStateBackendFactory.

state.checkpoints.dir参数定义了checkpoint数据和元数据文件存储的位置,你可以在这里发现更详细的checkpoint目录结构说明

配置示例:

# 状态存储
state.backend: filesystem # checkpoints数据存储目录
state.checkpoints.dir: hdfs://namenode:40010/flink/checkpoints

翻译自: https://ci.apache.org/projects/flink/flink-docs-release-1.8/ops/state/state_backends.html

Flink状态(二)的更多相关文章

  1. Flink状态管理与状态一致性(长文)

    目录 一.前言 二.状态类型 2.1.Keyed State 2.2.Operator State 三.状态横向扩展 四.检查点机制 4.1.开启检查点 (checkpoint) 4.2.保存点机制 ...

  2. Flink使用二次聚合实现TopN计算-乱序数据

    一.背景说明: 在上篇文章实现了TopN计算,但是碰到迟到数据则会无法在当前窗口计算,需要对其中的键控状态优化 Flink使用二次聚合实现TopN计算 本次需求是对数据进行统计,要求每隔5秒,输出最近 ...

  3. 第09讲:Flink 状态与容错

    Flink系列文章 第01讲:Flink 的应用场景和架构模型 第02讲:Flink 入门程序 WordCount 和 SQL 实现 第03讲:Flink 的编程模型与其他框架比较 第04讲:Flin ...

  4. Flink状态专题:keyed state和Operator state

            众所周知,flink是有状态的计算.所以学习flink不可不知状态.         正好最近公司有个需求,要用到flink的状态计算,需求是这样的,收集数据库新增的数据.       ...

  5. 大数据计算引擎之Flink Flink状态管理和容错

    这里将介绍Flink对有状态计算的支持,其中包括状态计算和无状态计算的区别,以及在Flink中支持的不同状态类型,分别有 Keyed State 和 Operator State .另外针对状态数据的 ...

  6. Flink状态后端的对比及机制

    1. Flink状态后端的类型: MemoryStateBackend FsStateBackend RocksDBStateBackend 2. 各状态后端对比: 2.1 MemoryStateBa ...

  7. 总结Flink状态管理和容错机制

    本文来自8月11日在北京举行的 Flink Meetup会议,分享来自于施晓罡,目前在阿里大数据团队部从事Blink方面的研发,现在主要负责Blink状态管理和容错相关技术的研发.   本文主要内容如 ...

  8. Flink(二)CentOS7.5搭建Flink1.6.1分布式集群

    一. Flink的下载 安装包下载地址:http://flink.apache.org/downloads.html  ,选择对应Hadoop的Flink版本下载 [admin@node21 soft ...

  9. Flink状态管理和容错机制介绍

    本文主要内容如下: 有状态的流数据处理: Flink中的状态接口: 状态管理和容错机制实现: 阿里相关工作介绍: 一.有状态的流数据处理# 1.1.什么是有状态的计算# 计算任务的结果不仅仅依赖于输入 ...

  10. Flink使用二次聚合实现TopN计算

    一.背景说明: 有需求需要对数据进行统计,要求每隔5分钟输出最近1小时内点击量最多的前N个商品,数据格式预览如下: 543462,1715,1464116,pv,1511658000 662867,2 ...

随机推荐

  1. [FAQ] web3js, Error: [number-to-bn] while converting number 0.1 to BN.js instance, error: invalid number value

    我们在调用合约方法时,都可以传一些参数的,比如转账金额 value. value 的单位是 wei,这是一个很小的单位,所以一般数值很大. 如果误把 ether 当成 wei 传参,就会报标题中的错误 ...

  2. 2019-8-31-dotnet-core-使用-PowerShell-脚本

    title author date CreateTime categories dotnet core 使用 PowerShell 脚本 lindexi 2019-08-31 16:55:58 +08 ...

  3. JavaScript数组Array方法介绍,使用示例及ES6拓展

    数组定义 有次序和编号的一组值 类似数组对象 函数agruments对象,字符串,DOM元素集 实例属性 Array.prototype.length length可以赋值,用以改变数组长度 arr. ...

  4. goland dlv在远程linux里运行代码开发,并debug调适

    一.配置好ssh自动同步代码 参考下面连接: https://www.cnblogs.com/haima/p/13257524.html 二.配置devbug监听运行 GO Remote 填写配置 l ...

  5. SHELL脚本获取域名对应的IP地址

    单个获取 编写角本pingip.sh #!/bin/sh ADDR=qq.com TMPSTR=`ping ${ADDR} -c 1 | sed '1{s/[^(]*(//;s/).*//;q}'` ...

  6. 一文搞懂 ARM 64 系列: ADC

    1 指令语法 adc <Xd>, <Xn>, <Xm> 2 指令语义 adc就是带「进位」加法,指令中的c就是英文carry. 整个指令等价于: (Xd, _) = ...

  7. 数据库中存储bool对象的数据,使用Bit和Integer有什么区别,性能上有多大的差异

    在数据库中存储布尔(Boolean)值时,常见的两种选择是使用 BIT 类型或 INTEGER 类型.两者在存储.性能和使用上的区别如下: 1. BIT 类型 存储:BIT 类型专门用于存储布尔值.通 ...

  8. 给公众号接入`FastWiki`智能AI知识库,让您的公众号加入智能行列

    最近由于公众号用户太多,我就在思考有啥方式能给微信公众号的粉丝提供更多的更好的服务?这个时候我就想是否可以给公众号接入一下AI?让用户跟微信公众号对话,然后还能回到用户的问题,并且我提供一些资料让AI ...

  9. QShop商城--项目介绍

    QShop商城-项目介绍 QShop商城,是全新推出的一款轻量级.高性能.前后端分离的电商系统,支持微信小程序,前后端源码100%开源,完美支持二次开发,让您快速搭建个性化独立商城. 技术架构:.Ne ...

  10. 单体项目使用Spring Security实现登陆认证授权

    前端可以根据权限信息控制菜单和页面展示,操作按钮的显示.但这并不够,如果有人拿到了接口,绕过了页面直接操作数据,这是很危险的.所以我们需要在后端也加入权限控制,只有拥有操作权限,该接口才能被授权访问. ...