【OpenYurt 深度解析】边缘网关缓存能力的优雅实现
简介: 阿里云边缘容器服务上线 1 年后,正式开源了云原生边缘计算解决方案 OpenYurt,跟其他开源的容器化边缘计算方案不同的地方在于:OpenYurt 秉持 Extending your native Kubernetes to edge 的理念,对 Kubernetes 系统零修改,并提供一键式转换原生 Kubernetes 为 OpenYurt,让原生 K8s 集群具备边缘集群能力。

作者 | 何淋波(新胜)
来源 | 阿里巴巴云原生公众号
OpenYurt:延伸原生 K8s 的能力到边缘
阿里云边缘容器服务上线 1 年后,正式开源了云原生边缘计算解决方案 OpenYurt,跟其他开源的容器化边缘计算方案不同的地方在于:OpenYurt 秉持 Extending your native Kubernetes to edge 的理念,对 Kubernetes 系统零修改,并提供一键式转换原生 Kubernetes 为 OpenYurt,让原生 K8s 集群具备边缘集群能力。
同时随着 OpenYurt 的持续演进,也一定会继续保持如下发展理念:
- 非侵入式增强 K8s
- 保持和云原生社区主流技术同步演进
OpenYurt 如何解决边缘自治问题
想要实现将 Kubernetes 系统延展到边缘计算场景,那么边缘节点将通过公网和云端连接,网络连接有很大不可控因素,可能带来边缘业务运行的不稳定因素,这是云原生和边缘计算融合的主要难点之一。
解决这个问题,需要使边缘侧具有自治能力,即当云边网络断开或者连接不稳定时,确保边缘业务可以持续运行。在 OpenYurt 中,该能力由 yurt-controller-manager 和 YurtHub 组件提供。
1. YurtHub 架构
在之前的文章中,我们详细介绍了 YurtHub 组件的能力。其架构图如下:

YurtHub 是一个带有数据缓存功能的“透明网关”,和云端网络断连状态下,如果节点或者组件重启,各个组件(kubelet/kube-proxy 等)将从 YurtHub 中获取到业务容器相关数据,有效解决边缘自治的问题。这也意味着我们需要实现一个轻量的带数据缓存能力的反向代理。
2. 第一想法
实现一个缓存数据的反向代理,第一想法就是从 response.Body 中读取数据,然后分别返回给请求 client 和本地的 Cache 模块。伪代码如下:
func HandleResponse(rw http.ResponseWriter, resp *http.Response) {
bodyBytes, _ := ioutil.ReadAll(resp.Body)
go func() {
// cache response on local disk
cacher.Write(bodyBytes)
}
// client reads data from response
rw.Write(bodyBytes)
}
当深入思考后,在 Kubernetes 系统中,上述实现会引发下面的问题:
- 问题 1:流式数据需要如何处理(如: K8s 中的 watch 请求),意味 ioutil.ReadAll() 一次调用无法返回所有数据。即如何可以返回流数据同时又缓存流数据。
- 问题 2:同时在本地缓存数据前,有可能需要对传入的 byte slice 数据先进行清洗处理。这意味着需要修改 byte slice,或者先备份 byte slice 再处理。这样会造成内存的大量消耗,同时针对流式数据,到底申请多大的 slice 也不好处理。
3. 优雅实现探讨
针对上面的问题,我们将问题逐个抽象,可以发现更优雅的实现方法。
- 问题 1:如何对流数据同时进行读写
针对流式数据的读写(一边返回一边缓存),如下图所示,其实需要的不过是把 response.Body(io.Reader) 转换成一个 io.Reader 和一个 io.Writer。或者说是一个 io.Reader 和 io.Writer 合成一个 io.Reader。这很容易就联想到 Linux 里面的 Tee 命令。

而在 Golang 中 Tee 命令是实现就是io.TeeReader,那问题 1 的伪代码如下:
func HandleResponse(rw http.ResponseWriter, resp *http.Response) {
// create TeeReader with response.Body and cacher
newRespBody := io.TeeReader(resp.Body, cacher)
// client reads data from response
io.Copy(rw, newRespBody)
}
通过 TeeReader 的对 Response.Body 和 Cacher 的整合,当请求 client 端从 response.Body 中读取数据时,将同时向 Cache 中写入返回数据,优雅的解决了流式数据的处理。
- 问题 2:如何在缓存前先清洗流数据
如下图所示,缓存前先清洗流数据,请求端和过滤端需要同时读取 response.Body(2 次读取问题)。也就是需要将 response.Body(io.Reader) 转换成两个 io.Reader。

也意味着问题 2 转化成:问题 1 中缓存端的 io.Writer 转换成 Data Filter 的 io.Reader。其实在 Linux 命令中也能找到类似命令,就是管道。因此问题 2 的伪代码如下:
func HandleResponse(rw http.ResponseWriter, resp *http.Response) {
pr, pw := io.Pipe()
// create TeeReader with response.Body and Pipe writer
newRespBody := io.TeeReader(resp.Body, pw)
go func() {
// filter reads data from response
io.Copy(dataFilter, pr)
}
// client reads data from response
io.Copy(rw, newRespBody)
}
通过 io.TeeReader 和 io.PiPe,当请求 client 端从 response.Body 中读取数据时,Filter 将同时从 Response 读取到数据,优雅的解决了流式数据的 2 次读取问题。
YurtHub 实现
最后看一下 YurtHub 中相关实现,由于 Response.Body 为 io.ReadCloser,所以实现了 dualReadCloser。同时 YurtHub 可能也面临对 http.Request 的缓存,所以增加了 isRespBody 参数用于判定是否需要负责关闭 response.Body。
// https://github.com/openyurtio/openyurt/blob/master/pkg/yurthub/util/util.go#L156
// NewDualReadCloser create an dualReadCloser object
func NewDualReadCloser(rc io.ReadCloser, isRespBody bool) (io.ReadCloser, io.ReadCloser) {
pr, pw := io.Pipe()
dr := &dualReadCloser{
rc: rc,
pw: pw,
isRespBody: isRespBody,
}
return dr, pr
}
type dualReadCloser struct {
rc io.ReadCloser
pw *io.PipeWriter
// isRespBody shows rc(is.ReadCloser) is a response.Body
// or not(maybe a request.Body). if it is true(it's a response.Body),
// we should close the response body in Close func, else not,
// it(request body) will be closed by http request caller
isRespBody bool
}
// Read read data into p and write into pipe
func (dr *dualReadCloser) Read(p []byte) (n int, err error) {
n, err = dr.rc.Read(p)
if n > 0 {
if n, err := dr.pw.Write(p[:n]); err != nil {
klog.Errorf("dualReader: failed to write %v", err)
return n, err
}
}
return
}
// Close close two readers
func (dr *dualReadCloser) Close() error {
errs := make([]error, 0)
if dr.isRespBody {
if err := dr.rc.Close(); err != nil {
errs = append(errs, err)
}
}
if err := dr.pw.Close(); err != nil {
errs = append(errs, err)
}
if len(errs) != 0 {
return fmt.Errorf("failed to close dualReader, %v", errs)
}
return nil
}
在使用 dualReadCloser 时,可以在httputil.NewSingleHostReverseProxy的modifyResponse()方法中看到。代码如下:
// https://github.com/openyurtio/openyurt/blob/master/pkg/yurthub/proxy/remote/remote.go#L85
func (rp *RemoteProxy) modifyResponse(resp *http.Response) error {rambohe-ch, 10 months ago: • hello openyurt
// 省略部分前置检查
rc, prc := util.NewDualReadCloser(resp.Body, true)
go func(ctx context.Context, prc io.ReadCloser, stopCh <-chan struct{}) {
err := rp.cacheMgr.CacheResponse(ctx, prc, stopCh)
if err != nil && err != io.EOF && err != context.Canceled {
klog.Errorf("%s response cache ended with error, %v", util.ReqString(req), err)
}
}(ctx, prc, rp.stopCh)
resp.Body = rc
}
总结
OpenYurt 于 2020 年 9 月进入 CNCF 沙箱后,持续保持了快速发展和迭代,在社区同学一起努力下,目前已经开源的能力有:
- 边缘自治
- 边缘单元化管理
- 云边协同运维
- 一键式无缝转换能力
同时在和社区同学的充分讨论下,OpenYurt 社区也发布了2021 roadmap,欢迎有兴趣的同学来一起贡献。
本文为阿里云原创内容,未经允许不得转载。
【OpenYurt 深度解析】边缘网关缓存能力的优雅实现的更多相关文章
- Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...
- Kafka深度解析
本文转发自Jason’s Blog,原文链接 http://www.jasongj.com/2015/01/02/Kafka深度解析 背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅 ...
- mybatis 3.x源码深度解析与最佳实践(最完整原创)
mybatis 3.x源码深度解析与最佳实践 1 环境准备 1.1 mybatis介绍以及框架源码的学习目标 1.2 本系列源码解析的方式 1.3 环境搭建 1.4 从Hello World开始 2 ...
- Kafka深度解析(如何在producer中指定partition)(转)
原文链接:Kafka深度解析 背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅的消息系统.主要设计目标如下: 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能 ...
- 《SEO深度解析——全面挖掘搜索引擎优化的核心秘密》
<SEO深度解析——全面挖掘搜索引擎优化的核心秘密> 基本信息 作者: 痞子瑞 出版社:电子工业出版社 ISBN:9787121224041 上架时间:2014-2-28 出版日期:201 ...
- 深度解析CNN
[1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反 ...
- Hibernate 3 深度解析--苏春波
Hibernate 3 深度解析 Hibernate 作为 Java ORM 模式的优秀开源实现, 当下已经成为一种标准,为饱受 JDBC 折磨的 Java 开发者带来了“福音.快速的版本更新,想 ...
- Feign Ribbon Hystrix 三者关系 | 史上最全, 深度解析
史上最全: Feign Ribbon Hystrix 三者关系 | 深度解析 疯狂创客圈 Java 分布式聊天室[ 亿级流量]实战系列之 -25[ 博客园 总入口 ] 前言 疯狂创客圈(笔者尼恩创建的 ...
- Uber的API生命周期管理平台边缘网关(Edge Gateway)的设计实践
设计边缘网关(Edge Gateway),一个高可用和高可扩展的自助服务网关,用于配置.管理和监控 Uber 每个业务领域的 API. Uber 的 API 网关的演进 2014 年 10 月,优步开 ...
- 华为全栈AI技术干货深度解析,解锁企业AI开发“秘籍”
摘要:针对企业AI开发应用中面临的痛点和难点,为大家带来从实践出发帮助企业构建成熟高效的AI开发流程解决方案. 在数字化转型浪潮席卷全球的今天,AI技术已经成为行业公认的升级重点,正在越来越多的领域为 ...
随机推荐
- enum class 用法
enum的主要缺点 1.类型不明确 首先,无法指定数据类型,导致我们无法明确枚举类型所占的内存大小.这种麻烦在结构体当中尤为突出,特别是当我们需要内存对齐和填充处理的时候. #include < ...
- 【atcoder abc276 】(a* 搜索)
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import ...
- Redis数据库安装与使用总结
Redis语句总结 一.基本概念 Redis 全称: Remote Dictionary Server(远程字典服务器)的缩写,以字典结构存储数据,并允许其他应用通过TCP协议读写字典中的内容. 使用 ...
- 更智能的广告素材生成!看A/B测试如何驱动AIGC素材调优
更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 前言:AIGC大爆发,引发广告营销行业变革 ChatGPT等AI产品引发的AIGC大爆发引起了各行业的震动,其中以 ...
- 使用Go语言开发一个短链接服务:五、添加和获取短链接
章节 使用Go语言开发一个短链接服务:一.基本原理 使用Go语言开发一个短链接服务:二.架构设计 使用Go语言开发一个短链接服务:三.项目目录结构设计 使用Go语言开发一个短链接服务:四.生成 ...
- QT之数据显示
引言 目前,为了提高数据校对的效率,使用合理的显示工具完成具体的数据处理,可以加速设计中调试的速度,这也是自行设计上位机的意义所在.数据处理在LabVIEW中是比较简单的,直接调用即可.在QT中可能需 ...
- KingbaseES V8R3 表加密
前言 透明加密是指将数据库page加密后写入磁盘,当需要读取对应page时进行加密读取.此过程对于用户是透明, 用户无需干预. 该文档进行数据库V8R3版本测试透明加密功能,需要说明,该版本发布时间早 ...
- Spark技术生态
Spark的技术生态 Spark的技术生态包含了各种丰富的组件,而不同的组件提供了不同功能,以适应不同场景. Spark core spark core包含Spark的基本功能,定义了RDD的API以 ...
- mybatis学习笔记(可复用的相关配置信息)
结果集映射: resultMap解决数据库字段名和属性名不一致的问题 id name pwd id name password column 是数据库的字段名 property 是实体类的属性名 &l ...
- Python---flask框架实现免密登录功能
思路总结: html代码: 1 <!DOCTYPE html> 2 <html lang="en"> 3 <head> 4 <meta c ...