园子好多年没有更过了,草长了不少。上次更还是读博之前,这次再更已是博士毕业2年有余,真是令人唏嘘。盗链我博客的人又见长,身边的师弟也问我挖的几个系列坑什么时候添上。这些着实令我欣喜,看来我写的东西也是有人乐意看的。去年11月份左右,因为研究需要,了解了一下强化学习(Reinforcement learning)。没想到这一了解就花了我10个月,看来我又得开新坑了。最近几个月亲自实践了多种高阶的强化学习算法。实践的过程毫无疑问是痛苦的,我的自信心被某些“细节”反复搓揉,待我决定写这篇Blog的时候,自信心已经被搓的稀巴烂了。我一贯喜欢在趟雷之后写Blog,防止被我踩过的雷再崩到别人。如果你此刻也在被DDPG/RDPG的某些细节搓揉,希望这篇博客能帮到你。
 
    根据个人经历,我把强化学习的学习过程分为几个层次:
        第一层次:RL小白(症状:误以为RL和DL’深度学习’没什么区别,不过换个算法罢了)
        第二层次:学习了RL的基本概念,逐渐抓住RL的本质(序贯决策),但从未运行过RL的程序
        第三层次:掌握了RL的大部分主干算法和逻辑,运行过别人写的RL程序,以为对RL懂得很多了。
        第四层次:亲自实践RL的程序,并应对多种不同的类型的Environment,然后惊讶的发现“CNM,为毛算法不收敛?难道我学习的理论错了?难道我的程序错了?”
 
    如果你处于第一个层次或者第二个层次,建议你转去莫烦Python或者是刘建平Pinard补基础。
    如果你处于第三个层次,劝君一句话:“纸上得来终觉浅,觉知此事要躬行”。RL的细节不是一般的多,而且招招致命。这一点和ML/DL真不太一样。
    如果你处于第四个层次,这篇文章希望成为你的答案。
 
本文分为四个部分:
  1. DDPG不收敛的潜在原因分析
  2. RDPG不收敛的潜在原因分析(含Github上几个不能收敛的RDPG源码分析)
  3. D(R)DPG可以收敛的源码(分Keras和pytorch两种版本)
  4. 强化学习实践(编程)过程的几点建议

一:DDPG不收敛的潜在原因分析

先上DDPG的算法伪代码:

(1)在编写Q(s, a)的过程中,错误的使用了layer.Add层而非layer.concatenate (keras版)或torch.cat (pytorch版)

会导致不收敛的critic代码如下:

 #程序清单1
1 from keras.layers import Add
2 #如下代码定义了critic网络
3 def _build_critic(self, featureDim, actionDim, learningRate=LR_C):
4 stateInputs = Input(shape = (featureDim, ), name = 'State-Input')
5 actionInput = Input(shape = (actionDim, ), name = 'Action-Input')
6 stateOut = Dense(30, activation = 'relu')(stateInputs)
7 actionOut = Dense(30, activation = 'relu')(actionInput)
8 Outputs = Add()([stateOut, actionOut])
9 init = RandomUniform(minval = -0.003, maxval = 0.003)
10 Outputs = Dense(1, activation = 'linear', name = 'Q-Value', kernel_initializer = init)(Outputs)
11 critic = Model(inputs = [stateInputs, actionInput], outputs = Outputs)
12 return critic

不收敛原因的分析:写代码的时候一定要多想想Q(s, a)的本质是什么?Q(s, a)的本质是多键值的联合查表,即采用s和a作为键值在一个表格中查表,只不过这个表格用神经网络替代了。也就是说,作为键值,s和a一定要分别单独给出,而不能加在一起然后再给神经网络

可以收敛的critic写法如下(Keras版):

#程序清单2
1 from keras.layers import concatenate
2
3 def _build_critic(self, featureDim, actionDim, learningRate=LR_C):
4
5 sinput = Input(shape=(featureDim,), name='state_input')
6 ainput = Input(shape=(actionDim,), name='action_input')
7 s = Dense(40, activation='relu')(sinput)
8 a = Dense(40, activation='relu')(ainput)
9 x = concatenate([s, a])
10 x = Dense(40, activation='relu')(x)
11 output = Dense(1, activation='linear')(x)
12
13 model = Model(inputs=[sinput, ainput], outputs=output)
14 model.compile(loss='mse', optimizer=Adam(lr=learningRate))
15
16 return model

(2)如果采用PyTorch编写actor神经网络,有一点要注意(经笔者实验,只有PyTorch有这个问题,Keras的coder可以放心的跳过这一节了)

使用PyTorch尽量不要使用Lambda层,实验结果上来看它似乎非常影响收敛性。尽管Keras上使用Lambda层不影响收敛性。

会导致收敛过程很坎坷甚至不收敛的actor代码如下:

#程序清单3
1 class Actor(torch.nn.Module):
2 def __init__(self, s_dim, a_dim):
3 super(Actor, self).__init__()
4 self.Layer1 = torch.nn.Linear(s_dim, 30) # Input layer
5 self.Layer2 = torch.nn.Linear(30, 30)
6 self.Layer3 = torch.nn.Linear(30, a_dim)
7 self.relu = torch.nn.ReLU()
8 self.tanh = torch.nn.Tanh()
9
10 def forward(self, s_input):
11 out = self.relu(self.Layer1(s_input)) # linear output
12 out = self.relu(self.Layer2(out))
13 out = self.tanh(self.Layer3(out))
14 out = Lambda(lambda x: x * 2)(out)
15 return out

注意到程序的第14行引用了Lambda层,笔者当时解决的问题是“Pendulum-v0”,对于该问题,合法的动作空间是[-2, 2]之间的。而13行的tanh输出在[-1, 1]之间。所以需要把13行的输出乘以2。但是笔者发现,这种写法收敛的过程相较不采用Lambda层而直接将out乘以2(代码之后给出)输出收敛的更慢,并且收敛的过程会被反复破坏然后再收敛,如下图:

上图的蓝线表示critic_loss, 橘线表示实时动作-状态值函数的预测输出。可以从上图(左)看到,在PyTorch中采用Lambda层规范动作值使得critic对动作-状态值函数的预测难以收敛,这表示它对critic的预测带来了负面的影响,总是不断的破坏critic的收敛性。上图(右)的代码如程序清单4中所示。直接将上一层网络的输出乘以2而没有使用Lambda层。可见critic的预测可以逐渐趋近于0(对于Pendulum-v0这是收敛,其他环境不趋于0),收敛性也好了很多。

可以收敛的actor写法如下:

#程序清单4
1 class Actor(torch.nn.Module):
2 def __init__(self, s_dim, a_dim):
3 super(Actor, self).__init__()
4
5 self.l1 = torch.nn.Linear(s_dim, 40)
6 self.l2 = torch.nn.Linear(40, 30)
7 self.l3 = torch.nn.Linear(30, a_dim)
8
9 def forward(self, x):
10 x = F.relu(self.l1(x))
11 x = F.relu(self.l2(x))
12 x = 2 * torch.tanh(self.l3(x))
13 return x

(3)如果采用PyTorch编写critic神经网络,有一点要注意(经笔者实验,也是只有PyTorch有这个问题,Keras的coder可以放心的跳过这一节了)

在编写Q(s, a)的时候,s和a一定要在一开始输入神经网络的时候就做连接操作(上文提到的concatenate)而不要让s和a分别经过一层神经网络后再做连接操作。否则,critic会不收敛。

会导致不收敛的critic代码如下:

#程序清单5 
1 class Critic(torch.nn.Module):
2 def __init__(self, s_dim, a_dim):
3 super(Critic, self).__init__()
4 self.Layer1_s = torch.nn.Linear(s_dim, 30)
5 self.Layer1_a = torch.nn.Linear(a_dim, 30)
6 self.Layer2 = torch.nn.Linear(30+30, 30)
7 self.Layer3 = torch.nn.Linear(30, 1)
8 self.relu = torch.nn.ReLU()
9
10 def forward(self, s_a):
11 s, a = s_a
12 out_s = self.relu(self.Layer1_s(s))
13 out_a = self.relu(self.Layer1_a(a))
14 out = self.relu(self.Layer2(torch.cat([out_s, out_a], dim=-1)))
15 out = self.Layer3(out)
16 return out

上图的蓝线表示critic_loss, 橘线表示实时动作-状态值函数的预测输出。上图(左)是程序清单5运行的结果输出。上图(右)是程序清单6运行的结果输出。

可以收敛的critic写法如下:

#程序清单6 
1 class Critic(torch.nn.Module):
2 def __init__(self, s_dim, a_dim):
3 super(Critic, self).__init__()
4
5 self.l1 = torch.nn.Linear(s_dim + a_dim, 40)
6 self.l2 = torch.nn.Linear(40 , 30)
7 self.l3 = torch.nn.Linear(30, 1)
8
9 def forward(self, x_u):
10 x, u = x_u
11 x = F.relu(self.l1(torch.cat([x, u], 1)))
12 x = F.relu(self.l2(x))
13 x = self.l3(x)
14 return x

你的DDPG/RDPG为何不收敛?的更多相关文章

  1. 强化学习(十六) 深度确定性策略梯度(DDPG)

    在强化学习(十五) A3C中,我们讨论了使用多线程的方法来解决Actor-Critic难收敛的问题,今天我们不使用多线程,而是使用和DDQN类似的方法:即经验回放和双网络的方法来改进Actor-Cri ...

  2. 深度强化学习:Policy-Based methods、Actor-Critic以及DDPG

    Policy-Based methods 在上篇文章中介绍的Deep Q-Learning算法属于基于价值(Value-Based)的方法,即估计最优的action-value function $q ...

  3. 强化学习调参技巧二:DDPG、TD3、SAC算法为例:

    1.训练环境如何正确编写 强化学习里的 env.reset() env.step() 就是训练环境.其编写流程如下: 1.1 初始阶段: 先写一个简化版的训练环境.把任务难度降到最低,确保一定能正常训 ...

  4. 【算法总结】强化学习部分基础算法总结(Q-learning DQN PG AC DDPG TD3)

    总结回顾一下近期学习的RL算法,并给部分实现算法整理了流程图.贴了代码. 1. value-based 基于价值的算法 基于价值算法是通过对agent所属的environment的状态或者状态动作对进 ...

  5. DNS解析过程和域名收敛、域名发散、SPDY应用

    前段时间项目要做域名收敛,糊里糊涂的完成了,好多原理不清晰,现在整理搜集下知识点. 域名收敛的目的是什么?简单来说就是域名解析慢.那为什么解析慢?且听下文慢慢道来. 什么是DNS? DNS( Doma ...

  6. 非Animal呢?为何不写个万用类

    /*4.非Animal呢?为何不写个万用类 * 类Object是JAVA里多有类的源头/父类*/ import java.util.*; class Animalb{ String name; voi ...

  7. Hadoop之为何不使用RAID?

    一.引言: 在一次和同事的讨论中遇到一个这样的问题:有一个hadoop集群,在hbase的put数据出现瓶颈,他们想要把datanode上的磁盘做成RAID 0(比如10块磁盘做成一个RAID 0), ...

  8. 再论EM算法的收敛性和K-Means的收敛性

    标签(空格分隔): 机器学习 (最近被一波波的笔试+面试淹没了,但是在有两次面试时被问到了同一个问题:K-Means算法的收敛性.在网上查阅了很多资料,并没有看到很清晰的解释,所以希望可以从K-Mea ...

  9. FPGA高级设计——时序分析和收敛(转)

    何谓静态时序分析(Static Timing Analysis,简称STA)? 它可以简单的定义为:设计者提出一些特定的时序要求(或者说是添加特定的时序约束),套用特定的时序模型,针对特定的电路进行分 ...

  10. 收敛 p75

    三种收敛.中心极限定理.大数定理.delta方法

随机推荐

  1. Power BI 8 DAY

    目录 DAX 表达式扩展 IN NOT IN 时间智能函数 List.Dates TOTALMTD PREVIOUSMONTH DATEADD DAX 表达式扩展 IN in:属于在...中的...( ...

  2. NC50505 二叉苹果树

    题目链接 题目 题目描述 有一棵二叉苹果树,如果数字有分叉,一定是分两叉,即没有只有一个儿子的节点.这棵树共N个节点,标号1至N,树根编号一定为1. 我们用一根树枝两端连接的节点编号描述一根树枝的位置 ...

  3. Goland 使用[临时]

    环境变量 因为module模式的引入, 多个项目可以共用同一套External Libraries, 在File->Settings->Go中, 设置GOROOT为go安装目录, 例如 / ...

  4. Optional 详解

    1 前言 Optional 是 Java 8 的新特性,专治空指针异常(NullPointerException, 简称 NPE)问题,它是一个容器类,里面只存储一个元素(这点不同于 Conllect ...

  5. elasticsearch should实现or功能,设置minimum_should_match

    elasticsearch实现传统数据库中的or功能,需要使用bool下面的should关键字,对于A or B的情况,应该至少返回A和B中的一个,但是如下语句,不仅返回A和B中的至少一个,也返回了没 ...

  6. 使用sqlmap执行SQL注入并获取数据库用户名

    Sqlmap介绍 sqlmap支持MySQL, Oracle,PostgreSQL, Microsoft SQL Server, Microsoft Access, IBM DB2, SQLite, ...

  7. spring boot整合poi实现excel文件导入导出实战

    今天科比离去,今天肺炎病毒持续肆虐... 意识到生命的脆弱,今天我继续前行,比以往更加坚定和紧迫,这辈子不活好自己就算白来一趟. 1.项目介绍 最近帮朋友做了一个小工具,就是实现:上传一个excel文 ...

  8. win32 - QueryDisplayConfig的使用

    QueryDisplayConfig函数检索关于所有显示设备的所有可能的显示路径,或视图,在当前设置的信息. C++样本: (开箱即用) 代码列出了所有显示器的名称和拓展模式 #include < ...

  9. 使用Gulp压缩静态资源

    如果希望对在静态页面中引入的相关资源进行压缩(比如:CSS,JavaScript,图片等),可以使用Gulp实现. 当然,还可以使用其他打包工具,比如:Grunt,Webpack等等. Gulp是什么 ...

  10. C C++内功心法-基础篇

    大家好,今天给大家讲讲C C++的一些基础语法,小编整理了一些简单入门基础知识,对于我们编程也有很多的帮助. C++ cin C++中的cin是一个 istream对象,从标准输入中读取数据,在ios ...