图像验证码识别,字母数字汉子均可cnn+lstm+ctc
图形验证码如下:

训练两轮时的准确率:上边显示的是未识别的

config_demo.yaml
System:
GpuMemoryFraction: 0.7
TrainSetPath: 'train/'
TestSetPath: 'test/'
ValSetPath: 'dev/'
LabelRegex: '([\u4E00-\u9FA5]{4,8}).jpg'
MaxTextLenth: 8
IMG_W: 200
IMG_H: 100
ModelName: 'captcha2.h5'
Alphabet: 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789' NeuralNet:
RNNSize: 256
Dropout: 0.25 TrainParam:
EarlyStoping:
monitor: 'val_acc'
patience: 10
mode: 'auto'
baseline: 0.02
Epochs: 10
BatchSize: 100
TestBatchSize: 10
train.py
# coding=utf-8
"""
将三通道的图片转为灰度图进行训练
"""
import itertools
import os
import re
import random
import string
from collections import Counter
from os.path import join
import yaml
import cv2
import numpy as np
import tensorflow as tf
from keras import backend as K
from keras.callbacks import ModelCheckpoint, EarlyStopping, Callback
from keras.layers import Input, Dense, Activation, Dropout, BatchNormalization, Reshape, Lambda
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.layers.merge import add, concatenate
from keras.layers.recurrent import GRU
from keras.models import Model, load_model f = open('./config/config_demo.yaml', 'r', encoding='utf-8')
cfg = f.read()
cfg_dict = yaml.load(cfg) config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)
K.set_session(session) TRAIN_SET_PTAH = cfg_dict['System']['TrainSetPath']
VALID_SET_PATH = cfg_dict['System']['TrainSetPath']
TEST_SET_PATH = cfg_dict['System']['TestSetPath']
IMG_W = cfg_dict['System']['IMG_W']
IMG_H = cfg_dict['System']['IMG_H']
MODEL_NAME = cfg_dict['System']['ModelName']
LABEL_REGEX = cfg_dict['System']['LabelRegex'] RNN_SIZE = cfg_dict['NeuralNet']['RNNSize']
DROPOUT = cfg_dict['NeuralNet']['Dropout'] MONITOR = cfg_dict['TrainParam']['EarlyStoping']['monitor']
PATIENCE = cfg_dict['TrainParam']['EarlyStoping']['patience']
MODE = cfg_dict['TrainParam']['EarlyStoping']['mode']
BASELINE = cfg_dict['TrainParam']['EarlyStoping']['baseline']
EPOCHS = cfg_dict['TrainParam']['Epochs']
BATCH_SIZE = cfg_dict['TrainParam']['BatchSize']
TEST_BATCH_SIZE = cfg_dict['TrainParam']['TestBatchSize'] letters_dict = {}
MAX_LEN = 0 def get_maxlen():
global MAX_LEN
maxlen = 0
lines = open("train.csv", "r", encoding="utf-8").readlines()
for line in lines:
name,label = line.strip().split(",")
if len(label)>maxlen:
maxlen = len(label)
MAX_LEN = maxlen
return maxlen def get_letters():
global letters_dict
letters = "" lines = open("train.csv","r",encoding="utf-8").readlines()
maxlen = get_maxlen()
for line in lines:
name,label = line.strip().split(",")
letters = letters+label
if len(label) < maxlen:
label = label + '_' * (maxlen - len(label))
letters_dict[name] = label if os.path.exists("letters.txt"):
letters = open("letters.txt","r",encoding="utf-8").read()
return letters
return "".join(set(letters)) letters = get_letters()
f_W = open("letters.txt","w",encoding="utf-8")
f_W.write("".join(letters))
class_num = len(letters) + 1 # plus 1 for blank
print('Letters:', ''.join(letters))
print("letters_num:",class_num) def labels_to_text(labels):
return ''.join([letters[int(x)] if int(x) != len(letters) else '' for x in labels]) def text_to_labels(text):
return [letters.find(x) if letters.find(x) > -1 else len(letters) for x in text] def is_valid_str(s):
for ch in s:
if not ch in letters:
return False
return True class TextImageGenerator: def __init__(self,
dirpath,
tag,
img_w, img_h,
batch_size,
downsample_factor,
):
global letters_dict
self.img_h = img_h
self.img_w = img_w
self.batch_size = batch_size
self.downsample_factor = downsample_factor
self.letters_dict = letters_dict
self.n = len(self.letters_dict)
self.indexes = list(range(self.n))
self.cur_index = 0
self.imgs = np.zeros((self.n, self.img_h, self.img_w))
self.texts = [] for i, (img_filepath, text) in enumerate(self.letters_dict.items()): img_filepath = dirpath+img_filepath
if i == 0:
img_filepath = "train/0.jpg"
img = cv2.imread(img_filepath)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # cv2默认是BGR模式
img = cv2.resize(img, (self.img_w, self.img_h))
img = img.astype(np.float32)
img /= 255
self.imgs[i, :, :] = img
self.texts.append(text)
print(len(self.texts),len(self.imgs),self.n) @staticmethod
def get_output_size():
return len(letters) + 1 def next_sample(self): #每次返回一个数据和对应标签
self.cur_index += 1
if self.cur_index >= self.n:
self.cur_index = 0
random.shuffle(self.indexes)
return self.imgs[self.indexes[self.cur_index]], self.texts[self.indexes[self.cur_index]] def next_batch(self): #
while True:
# width and height are backwards from typical Keras convention
# because width is the time dimension when it gets fed into the RNN
if K.image_data_format() == 'channels_first':
X_data = np.ones([self.batch_size, 1, self.img_w, self.img_h])
else:
X_data = np.ones([self.batch_size, self.img_w, self.img_h, 1])
Y_data = np.ones([self.batch_size, MAX_LEN])
input_length = np.ones((self.batch_size, 1)) * (self.img_w // self.downsample_factor - 2)
label_length = np.zeros((self.batch_size, 1))
source_str = [] for i in range(self.batch_size):
img, text = self.next_sample()
img = img.T
if K.image_data_format() == 'channels_first':
img = np.expand_dims(img, 0) #增加一个维度
else:
img = np.expand_dims(img, -1)
X_data[i] = img
Y_data[i] = text_to_labels(text)
source_str.append(text)
text = text.replace("_", "") # important step
label_length[i] = len(text) inputs = {
'the_input': X_data,
'the_labels': Y_data,
'input_length': input_length,
'label_length': label_length,
# 'source_str': source_str
}
outputs = {'ctc': np.zeros([self.batch_size])}
yield (inputs, outputs) # # Loss and train functions, network architecture
def ctc_lambda_func(args): #ctc损失是时间序列损失函数
y_pred, labels, input_length, label_length = args
# the 2 is critical here since the first couple outputs of the RNN
# tend to be garbage:
y_pred = y_pred[:, 2:, :]
return K.ctc_batch_cost(labels, y_pred, input_length, label_length) downsample_factor = 4 def train(img_w=IMG_W, img_h=IMG_H, dropout=DROPOUT, batch_size=BATCH_SIZE, rnn_size=RNN_SIZE):
# Input Parameters
# Network parameters
conv_filters = 16
kernel_size = (3, 3)
pool_size = 2
time_dense_size = 32 if K.image_data_format() == 'channels_first':
input_shape = (1, img_w, img_h)
else:
input_shape = (img_w, img_h, 1) global downsample_factor
downsample_factor = pool_size ** 2
tiger_train = TextImageGenerator(TRAIN_SET_PTAH, 'train', img_w, img_h, batch_size, downsample_factor)
tiger_val = TextImageGenerator(VALID_SET_PATH, 'val', img_w, img_h, batch_size, downsample_factor) act = 'relu'
input_data = Input(name='the_input', shape=input_shape, dtype='float32')
inner = Conv2D(conv_filters, kernel_size, padding='same',
activation=None, kernel_initializer='he_normal',
name='conv1')(input_data)
inner = BatchNormalization()(inner) # add BN
inner = Activation(act)(inner) inner = MaxPooling2D(pool_size=(pool_size, pool_size), name='max1')(inner)
inner = Conv2D(conv_filters, kernel_size, padding='same',
activation=None, kernel_initializer='he_normal',
name='conv2')(inner)
inner = BatchNormalization()(inner) # add BN
inner = Activation(act)(inner) inner = MaxPooling2D(pool_size=(pool_size, pool_size), name='max2')(inner) conv_to_rnn_dims = (img_w // (pool_size ** 2), (img_h // (pool_size ** 2)) * conv_filters)
inner = Reshape(target_shape=conv_to_rnn_dims, name='reshape')(inner) # cuts down input size going into RNN:
inner = Dense(time_dense_size, activation=None, name='dense1')(inner)
inner = BatchNormalization()(inner) # add BN
inner = Activation(act)(inner)
if dropout:
inner = Dropout(dropout)(inner) # 防止过拟合 # Two layers of bidirecitonal GRUs
# GRU seems to work as well, if not better than LSTM:
gru_1 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru1')(inner)
gru_1b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru1_b')(
inner)
gru1_merged = add([gru_1, gru_1b])
gru_2 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru2')(gru1_merged)
gru_2b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru2_b')(
gru1_merged) inner = concatenate([gru_2, gru_2b]) if dropout:
inner = Dropout(dropout)(inner) # 防止过拟合 # transforms RNN output to character activations:
inner = Dense(tiger_train.get_output_size(), kernel_initializer='he_normal',
name='dense2')(inner)
y_pred = Activation('softmax', name='softmax')(inner)
base_model = Model(inputs=input_data, outputs=y_pred)
base_model.summary() labels = Input(name='the_labels', shape=[MAX_LEN], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
# Keras doesn't currently support loss funcs with extra parameters
# so CTC loss is implemented in a lambda layer
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length]) model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
# the loss calc occurs elsewhere, so use a dummy lambda func for the loss
model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer='adadelta') earlystoping = EarlyStopping(monitor=MONITOR, patience=PATIENCE, verbose=1, mode=MODE, baseline=BASELINE)
train_model_path = './tmp/train_' + MODEL_NAME
checkpointer = ModelCheckpoint(filepath=train_model_path,
verbose=1,
save_best_only=True) if os.path.exists(train_model_path):
model.load_weights(train_model_path)
print('load model weights:%s' % train_model_path) evaluator = Evaluate(model)
model.fit_generator(generator=tiger_train.next_batch(),
steps_per_epoch=tiger_train.n,
epochs=EPOCHS,
initial_epoch=1,
validation_data=tiger_val.next_batch(),
validation_steps=tiger_val.n,
callbacks=[checkpointer, earlystoping, evaluator]) print('----train end----') # For a real OCR application, this should be beam search with a dictionary
# and language model. For this example, best path is sufficient.
def decode_batch(out):
ret = []
for j in range(out.shape[0]):
out_best = list(np.argmax(out[j, 2:], 1))
out_best = [k for k, g in itertools.groupby(out_best)]
outstr = ''
for c in out_best:
if c < len(letters):
outstr += letters[c]
ret.append(outstr)
return ret class Evaluate(Callback):
def __init__(self, model):
self.accs = []
self.model = model def on_epoch_end(self, epoch, logs=None):
acc = evaluate(self.model)
self.accs.append(acc) # Test on validation images
def evaluate(model):
global downsample_factor
tiger_test = TextImageGenerator(VALID_SET_PATH, 'test', IMG_W, IMG_H, TEST_BATCH_SIZE, downsample_factor) net_inp = model.get_layer(name='the_input').input
net_out = model.get_layer(name='softmax').output
predict_model = Model(inputs=net_inp, outputs=net_out) equalsIgnoreCaseNum = 0.00
equalsNum = 0.00
totalNum = 0.00
for inp_value, _ in tiger_test.next_batch():
batch_size = inp_value['the_input'].shape[0]
X_data = inp_value['the_input'] net_out_value = predict_model.predict(X_data)
pred_texts = decode_batch(net_out_value)
labels = inp_value['the_labels']
texts = []
for label in labels:
text = labels_to_text(label)
texts.append(text) for i in range(batch_size): totalNum += 1
if pred_texts[i] == texts[i]:
equalsNum += 1
if pred_texts[i].lower() == texts[i].lower():
equalsIgnoreCaseNum += 1
else:
print('Predict: %s ---> Label: %s' % (pred_texts[i], texts[i]))
if totalNum >= 10000:
break
print('---Result---')
print('Test num: %d, accuracy: %.5f, ignoreCase accuracy: %.5f' % (
totalNum, equalsNum / totalNum, equalsIgnoreCaseNum / totalNum))
return equalsIgnoreCaseNum / totalNum if __name__ == '__main__':
train()
test = True
if test:
model_path = './tmp/train_' + MODEL_NAME
model = load_model(model_path, compile=False)
evaluate(model)
print('----End----')
interface_testset.py
import itertools
import string
import yaml
from tqdm import tqdm
import cv2
import numpy as np
import os
import tensorflow as tf
from keras import backend as K
from keras.models import Model, load_model f = open('./config/config_demo.yaml', 'r', encoding='utf-8')
cfg = f.read()
cfg_dict = yaml.load(cfg)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)
K.set_session(session) MODEL_NAME = cfg_dict['System']['ModelName'] letters = string.ascii_uppercase + string.ascii_lowercase+string.digits def decode_batch(out):
ret = []
for j in range(out.shape[0]):
out_best = list(np.argmax(out[j, 2:], 1))
out_best = [k for k, g in itertools.groupby(out_best)]
outstr = ''
for c in out_best:
if c < len(letters):
outstr += letters[c]
ret.append(outstr)
return ret def get_x_data(img_data, img_w, img_h):
img = cv2.cvtColor(img_data, cv2.COLOR_RGB2GRAY)
img = cv2.resize(img, (img_w, img_h))
img = img.astype(np.float32)
img /= 255
batch_size = 1
if K.image_data_format() == 'channels_first':
X_data = np.ones([batch_size, 1, img_w, img_h])
else:
X_data = np.ones([batch_size, img_w, img_h, 1])
img = img.T
if K.image_data_format() == 'channels_first':
img = np.expand_dims(img, 0)
else:
img = np.expand_dims(img, -1)
X_data[0] = img
return X_data # Test on validation images
def interface(datapath ="./testset" ,img_w = 200,img_h = 100): save_file = open("answer.csv","a",encoding="utf-8")
save_file.truncate()
model_path = './tmp/train_' + MODEL_NAME
model = load_model(model_path, compile=False) net_inp = model.get_layer(name='the_input').input
net_out = model.get_layer(name='softmax').output
predict_model = Model(inputs=net_inp, outputs=net_out) print("开始预测,预测结果:")
listdir = os.listdir(datapath) bar = tqdm(range(len(listdir)),total=len(listdir))
for idx in bar:
img_data = cv2.imread(datapath+"/" + str(idx) + ".jpg")
X_data = get_x_data(img_data, img_w, img_h)
net_out_value = predict_model.predict(X_data)
pred_texts = decode_batch(net_out_value)
#print(str(idx) + ".jpg" + "\t", pred_texts[0])
save_file.write(str(idx)+","+pred_texts[0]+"\r\n") if __name__ == '__main__':
interface(datapath="./testset")
图像验证码识别,字母数字汉子均可cnn+lstm+ctc的更多相关文章
- 利用开源程序(ImageMagick+tesseract-ocr)实现图像验证码识别
--------------------------------------------------低调的分割线-------------------------------------------- ...
- canvas验证码 - 随机字母数字
基于canvas制作随机生成数字英文组合验证码效果,点击或刷新会自动重组.输入验证码提交验证效果代码. <div class="verification"> <i ...
- Python 3.6 版本-使用Pytesseract 模块进行图像验证码识别
环境: (1) win7 64位 (2) Idea (3) python 3.6 (4) pip install pillow < >pip install pytesse ...
- php生成纯数字、字母数字、图片、纯汉字的随机数验证码
现在讲开始通过PHP生成各种验证码旅途,新手要开车了,请刷卡! 首先,我们开始先生成一个放验证码的背景图片 注:没有Imagejpg()这个函数,只有imagepng()函数 imagecreatet ...
- 验证码识别之w3cschool字符图片验证码(easy级别)
起因: 最近在练习解析验证码,看到了这个网站的验证码比较简单,于是就拿来解析一下攒攒经验值,并无任何冒犯之意... 验证码所在网页: https://www.w3cschool.cn/checkmph ...
- CNN+BLSTM+CTC的验证码识别从训练到部署
项目地址:https://github.com/kerlomz/captcha_trainer 1. 前言 本项目适用于Python3.6,GPU>=NVIDIA GTX1050Ti,原mast ...
- 【转】CNN+BLSTM+CTC的验证码识别从训练到部署
[转]CNN+BLSTM+CTC的验证码识别从训练到部署 转载地址:https://www.jianshu.com/p/80ef04b16efc 项目地址:https://github.com/ker ...
- [验证码识别技术] 字符型验证码终结者-CNN+BLSTM+CTC
验证码识别(少样本,高精度)项目地址:https://github.com/kerlomz/captcha_trainer 1. 前言 本项目适用于Python3.6,GPU>=NVIDIA G ...
- 基于SVM的字母验证码识别
基于SVM的字母验证码识别 摘要 本文研究的问题是包含数字和字母的字符验证码的识别.我们采用的是传统的字符分割识别方法,首先将图像中的字符分割出来,然后再对单字符进行识别.首先通过图像的初步去噪.滤波 ...
- PHP字母数字验证码和中文验证码
1:字母数字组合的验证码 HTML代码: 验证码:<input type="text" name="code"> <img onclick=& ...
随机推荐
- XAF新手入门 - XAF设计模式探讨
前言 刚接触XAF的小伙伴可能会有一个疑惑,XAF中有Model(BusinessObject).View.Controller,感觉明显是一个MVC的设计模式,但当你用MVC的设计模式与其对应时,又 ...
- MySQL基础篇快速记忆和查询
查询 语法: SELECT 标识选择哪些列 FROM 标识从哪个表中选择 去重(Distinct) 在SELECT语句中使用关键字DISTINCT去除重复行 SELECT DISTINCT depar ...
- 浅谈IT系统性能优化
一个刚上线的IT系统,往往负载压力不大,所以不会存在什么性能问题.这时,人们大多只关心系统的功能性和用户体验.但是,随着时间推移,用户量和数据量都比刚上线的时候要多很多,高并发和大数据场景下,系统遇到 ...
- iview Input 必填不能未空 不能输入空格 v-model.trim required: true
iview Input 必填不能未空 不能输入空格 v-model.trim required: true 需求 测试在验证必填的时候,会输入一个空格,本着空格不算内容的原则,会提一个bug 解决方案 ...
- 摆脱鼠标系列 - vscode - Esc 返回时候 强制显示英文输入法 - ahk 脚本 - autoHotKey
为什么 摆脱鼠标系列 - vscode - Esc 返回时候 强制显示英文输入法 切换网页的时候,回来还是搜索输入法,就想到按esc,直接强制英文输入法 之前vim插件里面 用了一个 im-selec ...
- FFmpeg命令行之ffmpeg调整音视频播放速度
FFmpeg对音频.视频播放速度的调整的原理不一样.下面简单的说一下各自的原理及实现方式: 一.调整视频速率 视频的倍速主要是通过控制filter中的setpts来实现,setpts是视频滤波器通过改 ...
- 【732. 我的日程安排表 III】差分数组
class MyCalendarThree { private TreeMap<Integer, Integer> cnt; public MyCalendarThree() { cnt ...
- django项目(博客二)
扩展1:admin路由分发的本质 路由分发本质 include 可以无限制的 嵌套N多层 url(r'^index/',([],None,None)) 扩展2: 由于url方法第一个参数是正则表达式, ...
- 记录--前端换肤方案 - element+less无感换肤(无需页面刷新)
这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 前端换肤方案 - element+less无感换肤(无需页面刷新) 前言 前不久在改造一个迭代了一年多的项目时,增加了一个换肤功能.通过自 ...
- 金仓数据库kbcrypto 插件实现sm加密算法
首先介绍一下sm4 算法 SM4 算法是对称加密算法,国标 GB/T 32907 对 SM4 对称加密算法进行了详细描述.SM4 算法密钥长度固定为128bit,加密解密采用相同的密钥,加解密速度较快 ...