后缀数组,SA
主要是 \(O(n\log n)\) 倍增求 SA。
(为什么这么短)
const int N = 1e6 + 9;
int n;
int sa[N], sa_tmp[N], rk[N], ork[N], buc[N], ht[N];
char s[N];
void getSA() {
int m = 127;
rep (i, 1, n) ++buc[rk[i] = s[i]];
rep (i, 1, m) buc[i] += buc[i - 1];
per (i, n, 1) sa[buc[rk[i]]--] = i;
for (int len = 1, p = 0; ; m = p, p = 0, len *= 2) {
rep (i, n - len + 1, n) sa_tmp[++p] = i;
// 这里不用判断吗
rep (i, 1, n) if (sa[i] > len) sa_tmp[++p] = sa[i] - len;
memset(buc, 0, sizeof(buc[0]) * (m + 1));
rep (i, 1, n) ++buc[rk[i]];
rep (i, 1, m) buc[i] += buc[i - 1];
per (i, n, 1) {
int x = sa_tmp[i];
sa[buc[rk[x]]--] = x;
}
rep (i, 1, n) ork[i] = rk[i];
p = 0;
rep (i, 1, n) rk[sa[i]] = (ork[sa[i - 1]] == ork[sa[i]] && ork[sa[i - 1] + len] == ork[sa[i] + len]) ? p : ++p;
if (p == n) break;
}
int j = 0;
rep (i, 1, n - 1) {
if (j) --j;
while (s[i + j] == s[sa[rk[i] - 1] + j]) ++j;
ht[rk[i]] = j;
}
}
后缀数组,SA的更多相关文章
- 后缀数组(SA)总结
后缀数组(SA)总结 这个东西鸽了好久了,今天补一下 概念 后缀数组\(SA\)是什么东西? 它是记录一个字符串每个后缀的字典序的数组 \(sa[i]\):表示排名为\(i\)的后缀是哪一个. \(r ...
- 后缀数组SA学习笔记
什么是后缀数组 后缀数组\(sa[i]\)表示字符串中字典序排名为\(i\)的后缀位置 \(rk[i]\)表示字符串中第\(i\)个后缀的字典序排名 举个例子: ababa a b a b a rk: ...
- 后缀数组SA入门(史上最晦涩难懂的讲解)
参考资料:victorique的博客(有一点锅无伤大雅,记得看评论区),$wzz$ 课件(快去$ftp$%%%),$oi-wiki$以及某个人的帮助(万分感谢!) 首先还是要说一句:我不知道为什么我这 ...
- bzoj3796(后缀数组)(SA四连)
bzoj3796Mushroom追妹纸 题目描述 Mushroom最近看上了一个漂亮妹纸.他选择一种非常经典的手段来表达自己的心意——写情书.考虑到自己的表达能力,Mushroom决定不手写情书.他从 ...
- [笔记]后缀数组SA
参考资料这次是真抄的: 1.后缀数组详解 2.后缀数组-学习笔记 3.后缀数组--处理字符串的有力工具 定义 \(SA\)排名为\(i\)的后缀的位置 \(rk\)位置为\(i\)的后缀的排名 \(t ...
- 【字符串】后缀数组SA
后缀数组 概念 实际上就是将一个字符串的所有后缀按照字典序排序 得到了两个数组 \(sa[i]\) 和 \(rk[i]\),其中 \(sa[i]\) 表示排名为 i 的后缀,\(rk[i]\) 表示后 ...
- 浅谈后缀数组SA
这篇博客不打算讲多么详细,网上关于后缀数组的blog比我讲的好多了,这一篇博客我是为自己加深印象写的. 给你们分享了那么多,容我自私一回吧~ 参考资料:这位dalao的blog 一.关于求Suffix ...
- 后缀数组SA
复杂度:O(nlogn) 注:从0到n-1 const int maxn=1e5; char s[maxn]; int sa[maxn],Rank[maxn],height[maxn],rmq[max ...
- 洛谷2408不同字串个数/SPOJ 694/705 (后缀数组SA)
真是一个三倍经验好题啊. 我们来观察这个题目,首先如果直接整体计算,怕是不太好计算. 首先,我们可以将每个子串都看成一个后缀的的前缀.那我们就可以考虑一个一个后缀来计算了. 为了方便起见,我们选择按照 ...
- 洛谷4248 AHOI2013差异 (后缀数组SA+单调栈)
补博客! 首先我们观察题目中给的那个求\(ans\)的方法,其实前两项没什么用处,直接\(for\)一遍就求得了 for (int i=1;i<=n;i++) ans=ans+i*(n-1); ...
随机推荐
- [oeasy]python0088_字节_Byte_存储单位_KB_MB_GB_TB
编码进化 回忆上次内容 上次 回顾了 字符大战的结果 ibm 曾经的 EBCDIC 由于字符不连续的隐患 导致后续 出现 无数问题 无法补救 7-bit 的 ASA X3.4-1963 字母序号连续 ...
- 学习笔记--Java面向对象的继承
Java面向对象的继承 继承 继承是面向对象的三大特性之一 继承基本作用:代码复用:重要作用:有了继承才能有以后的"方法的覆盖"和"多态" 继承语法格式: [修 ...
- 有向图_节点间路径路径--python数据结构
字典创建有向图,查找图节点之间的路径,最短路径,所有路径 """ 参考文档: https://www.python.org/doc/essays/graphs/ &quo ...
- Docker PHP容器安装composer
1.进入php容器docker exec -it cb6c1fe83bff(php容器ID) bash2.安装composerphp -r "copy('https://install.ph ...
- 【云服务器】记录使用腾讯云服务器搭建个人blog网站-【1】服务器配置
服务器购买 第一次写博客,写的不好请见谅 腾讯云教育活动 配置还行,能搭建个网站了果断下单 选择系统 缺点(对我来说):参考于:人生不开窍:Windows Server各版本差异 不能安装window ...
- fragment基础
XML中调用fragment 属性包括: android:id="@+id/fragg" //ID android:name="com.example.subway.fr ...
- 【Vue】代理服务配置
Springboot 后台接口地址 基础路径配置: server: port: 8080 servlet: context-path: /demo 完整路径: localhost:8080/demo ...
- 【转载】 校正Ubuntu时间为北京时间
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_37421762/article/de ...
- 关于python的GIL的解除——PEP 703 – Making the Global Interpreter Lock Optional in CPython
PEP地址: https://peps.python.org/pep-0703/ PEP 703 – Making the Global Interpreter Lock Optional in CP ...
- VcXsrv: 一个好用的Windows X11 Server
windows10没有系统自带的X11服务器,使用了几款X11的windows下X11服务器软件后发现了一个好用的软件--VcXsrv. 下载地址: https://sourceforge.net/p ...