IEEE754浮点数表示形式
IEEE754浮点数表示形式
IEEE754浮点数官方文档:https://ieeexplore.ieee.org/document/8766229

浮点数的上述表示形式,既没有规定阶码和尾数的位数,也没有规定阶码和尾数采用的机器码形式(原码、反码、补码和移码)。实际上,直到20世纪80年代初,浮点数表示形式还没有统一标准,不同厂商计算机内部浮点数表示形式可能不同。
不同体系结构的计算机之间进行数据传送或程序移植时,必须进行数据格式的转换,并且数据格式转换还会带来运算结果的不一致。因此,美国电气及电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)于1985年发布 了浮点数标准IEEE754。
目前,几乎所有计算机都采用IEEE 754标准表示浮点数。
IEEE754标准主要包括两种基本的浮点数格式:
- 32位单精度浮点数,对应C语言中的float型。

其中:
- 符号:取值0表示正数;取值1表示负数。
- 阶码:定点整数,用移码表示。
- 尾数:定点小数,用原码表示。
- 64位双精度浮点数,对应C语言中的double型。

回顾一下移码定义:
假设真值x为定点整数,n为x的移码表示中数值位的位数(比特数量)。[x]移=x+\(2^{n}\), -\(2^{n}\)≤x<\(2^{n}\)
移码的优点:
- 最小真值的移码为全0,最大真值的移码为全1,符合人们的习惯。
- 真值0在移码中只有一种表示。
- 移码保持了真值原有的大小顺序,可以直接比较大小。
- 当浮点数的阶码用移码来表示时,就能很方便地比较阶码的大小。
- 不考虑移码的符号位看作无符号二进制数
[x]移=x+\(2^{n}\), -\(2^{n}\)≤x<\(2^{n}\)
[x]移=x+\(2^{7}\), -\(2^{7}\)≤x<\(2^{7}\)
在IEEE754浮点数标准中,32位单精度浮点数的8位阶码尽管采用移码表示,但采用偏移常数是\(2^{7}\)-1=127,而不是标准移码的\(2^{7}\)=128。
[x]移=x+(\(2^{7}\)-1), -\(2^{7}\)≤x<\(2^{7}\)

为什么偏移常数不采用标准的128,而采用127?
采用偏移常数128表示的最小规格化数的倒数会发生溢出,而采用偏移常数127表示的任何一个规格化数的倒数则不会溢出。

下面以32位单精度浮点数为例介绍IEEE754单精度浮点数标准:

- 符号:取值0表示正数;取值1表示负数。
- 阶码:定点整数,用移码表示,偏置常数27—1=127。
- 尾数:定点小数,用原码表示。符号位前移到最左侧。相邻左侧隐藏一个1,表示数值而不表示符号。尾数实际有24位,但不保存隐藏的那个1,只保存23位,节省的比特位可用于提高尾数的精度。完整的尾数形式为1.M

32位浮点数标准示意如下:

- 非数NaN用于表示\(\frac {0}{0}\)、\(\frac {∞}{∞}\)、0×∞、负数的平方根等。部分非数NaN运算结果可能会产生异常。
- 非规格化数可用于处理阶码下溢,使得出现比最小规格化数还小的数时程序也能继续进行下去。
- 引入无穷大数可使计算过程出现异常的情况下程序能继续执行,并且可为程序提供错误检测功能。例如非0浮点数除0运算的结果就是无究大,因此非0浮点数除不会像整型数除0一样产生严重错误。
32位浮点数和64位浮点数对比:


【例题1】将十进制数408.6875转换成IEEE754单精度浮点数的十六进制机器码。

【例题2】若C1830000是某个IEEE754单精度浮点数的十六进制机器码,求其对应的十进制值。

【2011年题13】float型数据通常用IEEE 754单精度格式表示。若编译器将float型变量x分配一个32位浮点寄存器FR1中,且x=—8.25,则FR1的内容是(A)。
A. C104 0000H
B. C242 0000H
C. C184 0000H
D. C1C2 0000H

【2013年题13】某数采用IEEE754单精度浮点数格式表示为C640000H,则该数的值是(A)。
A. -1. 5× \(2^{13}\)
B.-1.5× \(2^{12}\)
C.-0. 5 × \(2^{13}\)
D.-0.5×\(2^{12}\)

【2014年题14】float型数据常用IEEE 754单精度浮点格式表示。假设两个float型变量x和y分别存放在32位寄存器f1和f2中,若(f1)=CC900000H,(f2)=B0C00000H, 则x和y之间的关系是(A)。
A.x<y且符号相同
B.x<y且符号不同
C.x>y且符号相同
D.x>y且符号不同


【2022年 题14】—0.4375的IEEE754单精度浮点数表示为(A)
A. BEEO 0000H
B. BF60 0000H
C. BF70 0000H
D. COEO 0000H

IEEE754单精度(32位)浮点数表示范围:



【2012年题14】float类型(即IEEE754单精度浮点数格式)能表示的最大正整数是(D)。
A. 2126- 2103
B.2127-2104
C. 2127- 2103
D.2128-2104

【2018年题14】IEEE754单精度浮点格式表示的数中,最小的规格化正数是(A)。
A. 1.0 X \(2^{-126}\)
B. 1. 0 X \(2^{-127}\)
C. 1. 0 X \(2^{-128}\)
D.1.0×2\(2^{-149}\)

【2021年题14】下列数值中,不能用IEEE754浮点格式精确表示的是(A)。
A. 1. 2
B. 1. 25
C. 2.0
D. 2. 5

对于无限循环小数,通常只能采用舍入的方式近似表示,因此会带来数据表示的误差。这种误差会在计算的过程中不断累积放大,可能导致严重后果。

综上所述,程序员使用二进制浮点数编程时一定要非常小心,要充分考虑浮点数运算可能带来的计算误差,尽量避免对浮点数进行直接比较,在一些对误差极其敏感的情况下,建议采用十进制浮点数进行运算。
IEEE754其他浮点数标准:

推荐阅读:
欢迎关注公众号:愚生浅末
IEEE754浮点数表示形式的更多相关文章
- 震惊!计算机连0.3+0.6都算不对?浅谈IEEE754浮点数算数标准
>>> 0.3+0.6 0.8999999999999999 >>> 1-0.9 0.09999999999999998 >>> 0.1+0.1+ ...
- 把一个IEEE754浮点数转换为IBM370浮点数的C#代码
把一个IEEE754浮点数转换为IBM370浮点数的C#代码. 在这个网页上有古老的IBM370浮点格式的说明. // http://en.wikipedia.org/wiki/IBM_Floatin ...
- IEEE754 浮点数
IEEE754 浮点数 1.阅读IEEE754浮点数 A,阶码是用移码表示的,这里会有一个127的偏移量,它的127相当于0,小于127时为负,大于127时为正,比如:10000001表示指数为129 ...
- IEEE754浮点数
前言 Go语言之父Rob Pike大神曾吐槽:不能掌握正则表达式或浮点数就不配当码农! You should not be permitted to write production code if ...
- IEEE754浮点数表示法
IEEE二进制浮点数算术标准(ANSI/IEEE Std 754-1985)是一套规定如何用二进制表示浮点数的标准.就像"补码规则"建立了二进制位和正负数的一一对应关系一样,IEE ...
- IEEE Floating Point Standard (IEEE754浮点数表示法标准)
浮点数与定点数表示法是我们在计算机中常用的表示方法 所以必须要弄懂原理,特别是在FPGA里面,由于FPGA不能像在MCU一样直接用乘除法. 定点数 首先说一下简单的定点数,定点数是克服整数表示法不能表 ...
- matlab中实现 IEEE754浮点数 与 一般十进制数之间 互相转换的方法
------------恢复内容开始------------ %2020/12/2 11:42:31clcformat long % IEEE754 to deca = '40800000'a = d ...
- IEEE754浮点数的转换
将十进制数转换为单精度浮点数 如何将十进制数转换为单精度浮点数参考 首先要知道 IEEE浮点标准:V=(-1)^s * M * 2^E 1.符号(sign)s决定这个数是负数(s=1)还是正数,0(s ...
- IEEE754浮点数的表示方法
https://blog.csdn.net/K346K346/article/details/50487127
- 作业:IEEE754浮点数
人工转换: 5.75转换成二进制:101.11右移2位,补0:1.0111000000000000000000000000000000000000000000000000.10000000001 16 ...
随机推荐
- Mac下Eclipse打不开了怎么办
其实这个问题能搜到很多答案,但是对我有效的只有下面这一种. 背景 我需要使用到Eclipse,就下载了它的特定版本,用于开发RAP的. 连续两次都是使用后关闭,就再也打不开了. 选定的解决方案 试了好 ...
- P9376 题解
首先考虑怎么暴力. 考虑把每个数进行 \(B\) 进制分解,然后我们惊奇的发现这两个操作就是把最低位去掉和往最低位后面插入一个数. 然后我们顺藤摸瓜,把每个数的分解扔到 Trie 树上,我们发现我们要 ...
- Spring5.X的bean的scope作用域
scope属性 singleton:单例,默认值,调用getBean方法返回是同一个对象,实例会被缓存起来,效率比较高,当一个bean被标识为singleton时候,spring的IOC容器中只会存在 ...
- 【JavaScript】js中的浅拷贝与深拷贝与手写实现
前言 什么是深拷贝与浅拷贝?深拷贝与浅拷贝是js中处理对象或数据复制操作的两种方式.在聊深浅拷贝之前咱得了解一下js中的两种数据类型: 基本数据类型(6种) String.Number.Object ...
- C# 算术表达式求值(后缀法),看这一篇就够了
一.种类介绍 算术表达式有三种:前缀表达式.中缀表达式和后缀表达式.一般用的是中缀,比如1+1,前后缀就是把操作符移到前面和后面,下面简单介绍一下这三种表达式. 1.前缀表示法 前缀表示法又叫波兰表示 ...
- SUM-ACM,3月24-3-31周报
两场天梯赛和一场atcoder. 主要错误知识点在于字符串的处理和并查集的掌握不够,不懂灵活运用. 第一场pta天梯赛 7-5 6翻了 一道字符串的题,我只拿了14分.我不熟悉一个点,f(i,0,s. ...
- gist.github.com 无法访问解决办法,亲测永远有效!
1.打开https://www.ipaddress.com/,输入gist.github.com获取IP地址 2.ping 此ip地址,可以访问 3.将IP地址写入Hosts文件,140.82.113 ...
- oauth2协议
什么是OAUTH2协议: 首先是几个概念问题: 资源:用户信息,在微信中存储 资源拥有者:用户 认证服务:微信负责认证用户的身份,也负责为客户端颁发令牌 客户端:携带令牌请求微信获取用户信息 仍以微信 ...
- pidstat命令详解
pidstat命令详解 pidstat 命令是 sysstat 工具的一个命令,用来监控全部或者指定进程的CPU.内存.线程.设备IO等系统资源的占用情况.pidstat 首次运行时显示自系统启动开始 ...
- 测试环境配置https+端口访问留存
步骤1:阿里云DNS配置本地公网IP解析 步骤2:本地局域网192.168.1.10服务器配置nginx server { listen 8090 ssl; server_name localhost ...
