文心一言 VS 讯飞星火 VS chatgpt (24)-- 算法导论4.2 6题
六、用Strassen 算法作为子进程来进行一个 knn 矩阵和一个nkn 矩阵相乘,最快需要花费多长时间?对两个输入矩阵规模互换的情况,回答相同的问题。
文心一言:
Strassen 算法是一种用于矩阵乘法的分治算法,它将原始的矩阵分解为较小的子矩阵,然后使用子矩阵相乘的结果来计算原始矩阵的乘积。
对于一个 knn 矩阵和一个 nkn 矩阵相乘,如果使用 Strassen 算法进行分解,最坏情况下需要进行 7 次矩阵乘法运算和 6 次加法运算。因此,在最坏情况下,该算法的时间复杂度为 O(n^1.44)。
对于两个输入矩阵规模互换的情况,如果使用 Strassen 算法进行分解,最坏情况下需要进行 7 次矩阵乘法运算和 6 次加法运算。因此,在最坏情况下,该算法的时间复杂度也为 O(n^1.44)。
需要注意的是,在实际应用中,由于 Strassen 算法需要额外进行子矩阵的分解和合并操作,因此其实际运行时间可能会比理论时间复杂度略慢一些。

讯飞星火:
代码解决方案:
Cython 是一个可以将 Python 代码转换为 C 代码的工具。通过使用 Cython,可以大大提高 Python 代码的执行速度。然而,如果在 Cython代码中使用了数组,可能会影响性能。这是因为数组是 Python 对象,而 Cython 需要将它们转换为 C 类型的数组。如果数组过大或过于复杂,可能会导致性能下降。
以下是一个可能的解决方案,可以帮助优化 Cython 代码中的数组性能:
1.避免在循环中过多使用数组。如果数组太大或过于复杂,可以考虑使用其他数据结构,例如列表或元组。
2.使用 Cython 提供的内存视图功能。内存视图是一种允许在 Cython 代码中访问 C 内存的方式。使用内存视图可以避免将大量数据复制到 Python 堆栈中,从而提高性能。但是,使用内存视图可能会导致代码更加复杂和难以理解,因此需要谨慎使用。
3.将数组声明为常量。如果数组的大小不会发生变化,可以将数组声明为常量。这样可以避免在运行时重复分配内存,从而提高性能。
下面是一个示例代码,演示了如何在 Cython 代码中优化数组性能:
python
import numpy as np
cimport numpy as np
# 定义一个常量数组
a = np.array([1, 2, 3], dtype=np.int32)
# 定义一个函数,使用常量数组作为输入
def func(const int n, const int k, const int* a):
cdef int i, j
cdef int* b = <int*>malloc(n * k * sizeof(int))
# 将输入数组复制到 C 内存中
for i in range(n):
for j in range(k):
b[i * k + j] = a[i * k + j]
# 在 C 代码中执行计算
# ...
# 将结果存储回 Python 数组中
# ...
free(b)
# 测试函数
func(2000, 5000, a)
在上面的示例代码中,我们首先定义了一个常量数组 a,然后定义了一个函数 func(),该函数接受一个大小为 n*k
的输入数组,并在 C 代码中执行计算。在函数内部,我们使用 malloc() 函数将输入数组复制到 C 内存中,并在 C
代码中执行计算。最后,我们使用 free() 函数将结果存储回 Python 数组中。


华为盘古:
对于Strassen算法,在处理规模为kn*n的矩阵相乘时,可以将其转换为两个Strassen子串的乘积,然后使用Strassen算法进行相乘。具体而言,我们可以将矩阵A[i][j] = [i, j],代入矩阵B[i][j] = [i, j],然后使用Strassen算法进行相乘。
对于输入矩阵规模互换的情况,我们可以使用以下算法:
1.对角线法:对于规模为knn的矩阵,我们可以先找到两个对角线,然后将它们分别乘以矩阵A和矩阵B。这样得到的矩阵相乘的结果仍然是knn的。
2.快速幂法:快速幂法则是使用矩阵A的幂值来计算矩阵B的幂值,即A^(n+k)。假设矩阵A的幂值为a,矩阵B的幂值为b,那么可以使用快速幂法则计算:
a^(n+k) = b^(n+k)
其中n为矩阵A的行数,k为矩阵B的列数。因此,当矩阵A的行数为k时,矩阵B的列数为k,并且k为正整数。
因此,对于输入矩阵规模互换的情况,我们可以使用快速幂法则来进行计算,最快需要花费的时间取决于矩阵A和矩阵B的规模。

chatglm:
Strassen 算法是一种高效的矩阵乘法算法,其时间复杂度为 O(n^(3/2))。在子进程中使用 Strassen 算法进行矩阵相乘,最坏情况下需要时间复杂度为 O(n^2) 的子进程数量,即需要 n 个子进程并行计算。因此,对于规模为 knn 和 nkn 的矩阵相乘,最坏情况下最快需要花费 O(n^2) 的时间。
当输入矩阵规模互换时,需要对 Strassen 算法进行调整,以适应新的输入规模。具体来说,需要调整算法中的系数 k 和常数 C,以适应新的输入规模。调整后的 Strassen 算法的时间复杂度为 O(n^(3/2)),仍具有很高的效率。
因此,无论输入矩阵规模如何互换,使用 Strassen 算法进行矩阵相乘最快需要花费 O(n^(3/2)) 的时间。

chatgpt:
使用 Strassen 算法进行 knn 矩阵和 nkn 矩阵相乘,最好的情况下时间复杂度为 O(n^log2(7))。
假设 Strassen 算法作为子进程运行,那么最快需要花费的时间取决于两个因素:
1.子进程启动和初始化所需的开销
2.实际计算矩阵乘积所需的时间
对于第一个因素,我们可以假设子进程已经启动,并已经完成了必要的初始化工作。这个开销通常很小,可以忽略不计。
对于第二个因素,我们需要考虑实际计算矩阵乘积所需的时间。根据 Strassen 算法的时间复杂度,当 n 足够大时,运行时间将接近 O(n^2.81)。因此,当规模较大时,计算矩阵乘积的时间可能会非常长。
对于两个输入矩阵规模互换的情况,计算复杂度和上述情况是相同的。因此,最快需要的时间也相同。
总之,时间复杂度为 O(n^log2(7)) 的 Strassen 算法可以在较大规模的矩阵乘法中提供比传统算法更好的性能。但是,在实际使用时,仍需要考虑子进程启动和初始化时间、系统资源限制等因素,以确定最终的计算时间。

文心一言 VS 讯飞星火 VS chatgpt (24)-- 算法导论4.2 6题的更多相关文章
- 【对比】文心一言对飚ChatGPT实操对比体验
前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...
- 【个人首测】百度文心一言 VS ChatGPT GPT-4
昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...
- 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入
"文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...
- 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果
百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...
- 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)
目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...
- 阿里版ChatGPT:通义千问pk文心一言
随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...
- 基于讯飞语音API应用开发之——离线词典构建
最近实习在做一个跟语音相关的项目,就在度娘上搜索了很多关于语音的API,顺藤摸瓜找到了科大讯飞,虽然度娘自家也有语音识别.语义理解这块,但感觉应该不是很好用,毕竟之前用过百度地图的API,有问题也找不 ...
- android用讯飞实现TTS语音合成 实现中文版
Android系统从1.6版本开始就支持TTS(Text-To-Speech),即语音合成.但是android系统默认的TTS引擎:Pic TTS不支持中文.所以我们得安装自己的TTS引擎和语音包. ...
- android讯飞语音开发常遇到的问题
场景:android项目中共使用了3个语音组件:在线语音听写.离线语音合成.离线语音识别 11208:遇到这个错误,授权应用失败,先检查装机量(3台测试权限),以及appid的申请时间(35天期限), ...
- 初探机器学习之使用讯飞TTS服务实现在线语音合成
最近在调研使用各个云平台提供的AI服务,有个语音合成的需求因此就使用了一下科大讯飞的TTS服务,也用.NET Core写了一个小示例,下面就是这个小示例及其相关背景知识的介绍. 一.什么是语音合成(T ...
随机推荐
- 如何快速弄懂Java线程池
Java线程池是一种高效的多线程编程技术,它可以帮助程序员有效地控制多线程的并发执行.它可以提高应用程序的性能.降低内存消耗和减少延迟. 线程池的原理是,程序员可以将每个任务放入线程池中,然后由线程池 ...
- MyBatisPlus 逻辑删除演示
一.数据库 数据库中添加逻辑删除字段:
- 恰好经过k条边的最短路
需要用到离散数学中关于关系矩阵的运算的知识 一个表示一个图中任意两点间经过2条边最短路的关系矩阵的平方表示的是任意两点间经过4条边的最短路的关系矩阵 原因在于当我们选定中间点时,路径的前半部分和后半部 ...
- 微软 New Bing AI 申请与使用保姆级教程(免魔法)
本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问. 大家好,我是小彭. 最近的 AI 技术实在火爆,从 OpenAI 的 ChatGPT,到微软的 New Bi ...
- ACM-学习记录-尺取法
题目 给定一个数组和一个数s,在这个数组中找一个区间,使得这个区间之和等于s. 例如:给定的数组int x[14] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
- Spring 源码阅读之标签解析
全局目录.md 引子 1.容器最基本使用.md 系列1 - bean 标签解析: 2.XmlBeanFactory 的类图介绍.md 3.XmlBeanFactory 对xml文件读取.md 4.xm ...
- [Java EE]解决浏览器跨域问题
1 解决浏览器跨域问题的方案 方式1: 浏览器(chrome)中取消跨域限制 step1 浏览器 chrome://flags step2 搜索:same step3 将搜索结果中的3个插件[Same ...
- 1.封装PageHelper实现分页
前言 这几天想着动手将一些技术融合到项目中,昨天思考了会儿,想起了我与亲戚的对话:我说:"我想将若依项目完整的实现一遍",亲戚给我反馈到"你没必要完整复现若依项目,而且你 ...
- c# 异步进阶———— paralel [二]
前言 简单整理一下paralel,以上是并行的意思. 正文 我们在工作中常常使用task await 和 async,也就是将线程池进行了封装,那么还有一些更高级的应用. 是对task的封装,那么来看 ...
- AndroidApp加固与脱壳
0x01 APP加固 01.为什么要加固 APP加固是对APP代码逻辑的一种保护.原理是将应用文件进行某种形式的转换,包括不限于隐藏,混淆,加密等操作,进一步保护软件的利益不受损坏.总结主要有以下三方 ...