NC51180 Accumulation Degree
题目
题目描述
Trees are an important component of the natural landscape because of their prevention of erosion and the provision of a specific ather-sheltered ecosystem in and under their foliage. Trees have also been found to play an important role in producing oxygen and reducing carbon dioxide in the atmosphere, as well as moderating ground temperatures. They are also significant elements in landscaping and agriculture, both for their aesthetic appeal and their orchard crops (such as apples). Wood from trees is a common building material.
Trees also play an intimate role in many of the world's mythologies. Many scholars are interested in finding peculiar properties about trees, such as the center of a tree, tree counting, tree coloring. A(x) is one of such properties.
A(x) (accumulation degree of node x) is defined as follows:
- Each edge of the tree has an positive capacity.
- The nodes with degree of one in the tree are named terminals.
- The flow of each edge can't exceed its capacity.
- A(x) is the maximal flow that node x can flow to other terminal nodes.
Since it may be hard to understand the definition, an example is showed below:
| A(1)=11+5+8=24 | ||
|---|---|---|
| Details: | 1->2 | 11 |
| 1->4->3 | 5 | |
| 1->4->5 | 8(since 1->4 has capacity of 13) | |
| A(2)=5+6=11 | ||
| Details: | 2->1->4->3 | 5 |
| 2->1->4->5 | 6 | |
| A(3)=5 | ||
| Details: | 3->4->5 | 5 |
| A(4)=11+5+10=26 | ||
| Details: | 4->1->2 | 11 |
| 4->3 | 5 | |
| 4->5 | 10 | |
| A(5)=10 | ||
| Details: | 5->4->1->2 | 10 |
The accumulation degree of a tree is the maximal accumulation degree among its nodes. Here your task is to find the accumulation degree of the given trees.
输入描述
The first line of the input is an integer T which indicates the number of test cases. The first line of each test case is a positive integer n. Each of the following n - 1 lines contains three integers x, y, z separated by spaces, representing there is an edge between node x and node y, and the capacity of the edge is z. Nodes are numbered from 1 to n.
All the elements are nonnegative integers no more than 200000. You may assume that the test data are all tree metrics.
输出描述
For each test case, output the result on a single line.
示例1
输入
1
5
1 2 11
1 4 13
3 4 5
4 5 10
输出
26
题解
知识点:树形dp。
显然树形dp,二次扫描+换根。
第一次先预处理出每个子树的流量最大值,设 \(f[u]\) 为以 \(u\) 为根的子树的流量最大值。转移方程为:
\left \{
\begin{aligned}
&\min (f[v_i],w_{v_i}) & &,v_i不是叶子节点\\
&w_{v_i} & &,v_i是叶子节点
\end{aligned}
\right.
\]
第二次处理出每个点对于整棵树的最大值,设 \(ff[u]\) 为以 \(u\) 为源点的流量最大值。转移方程为:
\left \{
\begin{aligned}
&w_v & &,u是叶子节点\\
&\min(ff[u] - w_v, w_v) & &,v是叶子节点\\
&\min(ff[u] - \min(f[v], w_u), w_u)& &,otherwise
\end{aligned}
\right.
\]
具体原因注释里写着。
时间复杂度 \(O(n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
vector<pair<int, ll>> g[200007];
ll f[200007];
void dfs1(int u, int fa) {
for (auto [v, w] : g[u]) {
if (v == fa) continue;
dfs1(v, u);
f[u] += g[v].size() == 1 ? w : min(f[v], w);///叶子节点可以直接贡献,因此直接加
}
}
void dfs2(int u, int fa) {
for (auto [v, w] : g[u]) {
if (v == fa) continue;
if (g[u].size() == 1) f[v] += w;///如果父节点是一个叶节点,可以直接贡献,不需要考虑其到其他子树流量为0
else if (g[v].size() == 1) f[v] += min(f[u] - w, w);///否则如果自己是一个叶节点,自己支路流量应该直接是w,而不能min(f[v],w)
else f[v] += min(f[u] - min(f[v], w), w);///否则大家都不是叶子节点,则总贡献=子树内贡献+min(父节点总贡献-子树实际贡献,边权)
dfs2(v, u);
}
}
bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) g[i].clear(), f[i] = 0;
for (int i = 1;i < n;i++) {
int u, v, w;
cin >> u >> v >> w;
g[u].push_back({ v,w });
g[v].push_back({ u,w });
}
dfs1(1, 0);
dfs2(1, 0);
ll ans = 0;
for (int i = 1;i <= n;i++) ans = max(ans, f[i]);
cout << ans << '\n';
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}
NC51180 Accumulation Degree的更多相关文章
- poj3585 Accumulation Degree【树形DP】【最大流】
Accumulation Degree Time Limit: 5000MS Memory Limit: 65536K Total Submissions:3151 Accepted: 783 ...
- POJ3585:Accumulation Degree(换根树形dp)
Accumulation Degree Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3425 Accepted: 85 ...
- poj 3585 Accumulation Degree(二次扫描和换根法)
Accumulation Degree 大致题意:有一棵流量树,它的每一条边都有一个正流量,树上所有度数为一的节点都是出口,相应的树上每一个节点都有一个权值,它表示从这个节点向其他出口可以输送的最大总 ...
- Accumulation Degree
#include<cstdio> #include<cstring> #define INF 0x7fffffff using namespace std; ; inline ...
- poj3585 Accumulation Degree[树形DP换根]
思路其实非常简单,借用一下最大流求法即可...默认以1为根时,$f[x]$表示以$x$为根的子树最大流.转移的话分两种情况,一种由叶子转移,一种由正常孩子转移,判断一下即可.换根的时候由頂向下递推转移 ...
- POJ 3585 Accumulation Degree
二次扫描与换根法 用于解决无根树,对于每一个节点作为根时都要统计 做法: 1.先以任意一个节点为根,做树形DP,保存每个节点的DP值 2.然后自上而下dfs,对于每个节点考虑以他为根的最大值 #inc ...
- 【POJ3585】Accumulation Degree 二次扫描与换根法
简单来说,这是一道树形结构上的最大流问题. 朴素的解法是可以以每个节点为源点,单独进行一次dp,时间复杂度是\(O(n^2)\) 但是在朴素求解的过程中,相当于每次都求解了一次整棵树的信息,会做了不少 ...
- POJ3585 Accumulation Degree(二次扫描与换根法)
题目:http://poj.org/problem?id=3585 很容易想出暴力.那么就先扫一遍. 然后得到了指定一个根后每个点的子树值. 怎么转化利用一下呢?要是能找出当前点的父亲的 “ 不含当前 ...
- [POJ3585]Accumulation Degree
题面 \(\text{Solution:}\) 有些题目不仅让我们做树型 \(\text{dp}\) ,而且还让我们换每个根分别做一次, 然后这样就愉快的 \(\text{TLE}\) 了,所以我们要 ...
- POJ3585 Accumulation Degree 【树形dp】
题目链接 POJ3585 题解 -二次扫描与换根法- 对于这样一个无根树的树形dp 我们先任选一根进行一次树形dp 然后再扫一遍通过计算得出每个点为根时的答案 #include<iostream ...
随机推荐
- Elasticsearch 索引与文档的常用操作总结二:复杂条件查询
本文为博主原创,未经允许不得转载: 1. 查询所有:match_all GET /es_db/_doc/_search { "query":{ "match_all&q ...
- java占位符%d,%s等的使用
(转载自:http://www.cnblogs.com/happyday56/p/3996498.html) String类的format()方法用于创建格式化的字符串以及连接多个字符串对象.熟悉C语 ...
- Blazor的技术优点
Blazor是一种使用.NET和C#构建客户端Web应用程序的新兴技术.它允许开发者在浏览器中直接运行.NET代码,而无需依赖JavaScript.Blazor的技术优点主要表现在以下几个方面: 单一 ...
- [转帖]SecurityProtocolType 枚举
https://learn.microsoft.com/zh-cn/dotnet/api/system.net.securityprotocoltype?view=net-8.0 命名空间: Syst ...
- [转帖]使用 TiUP 部署运维 TiDB 线上集群
https://docs.pingcap.com/zh/tidb/stable/tiup-cluster 本文重在介绍如何使用 TiUP 的 cluster 组件,如果需要线上部署的完整步骤,可参考使 ...
- [转帖]怎么查看Linux服务器硬件信息,这些命令告诉你
https://zhuanlan.zhihu.com/p/144368206 Linux服务器配置文档找不到,你还在为查询Linux服务器硬件信息发愁吗?学会这些命令,让你轻松查看Linux服务器的C ...
- overcommit_memory的简单学习
overcommit_memory的简单学习 背景 前几天一个测试环境启动失败. 总是有如下的提示: Native memory allocation (mmap) failed to map 122 ...
- [转帖]RPC 框架架构设计
github地址:https://github.com/xiaojiesir/mini-rpc RPC 又称远程过程调用(Remote Procedure Call),用于解决分布式系统中服务之间的调 ...
- 浪潮的CS5260F CS5260H CS5260Z
助力国产操作系统新生态!麒麟信安与东方通.浪潮.新华三.长城超云等多家生态伙伴完成产品兼容性认证 作者:湖南麒麟信安科技股份有限公司时间:2022-03-11 16:28:11 我要发布 关键词: 国 ...
- 【转贴】libcrypto.so.10丢失导致sshd无法运行解决方案
http://www.cnblogs.com/billy98/p/4226023.html libcrypto.so.10丢失导致sshd无法运行解决方案 服务器由于掉电开启系统后无法远程ssh,重启 ...