颗粒流 + Janssen 定律 + Bagnold 数
对于 \(n\) 个球,易得有
\displaystyle\frac\pi2>\theta_i>-\frac\pi2,\theta_1>\cdots>\theta_i>\cdots>\theta_{n-1} \\[1ex]
\displaystyle\forall i\ne j,\left\lvert\sum_{k=1}^ir_k-\sum_{k=1}^jr_k\right\rvert\ge D
\end{array}
\]
记 \(x=X/D\),则有 \(x+1>d\)。
设 \(\theta_i\) 的概率分布为 \(f(\theta_i)\),应有 \(f_1(\theta)=1/\pi\),\(f_i(\theta)=3/(4\pi)\),则一个由 \(n\) 个球形成的拱的水平分量 \(x\) 的概率分布变成
a_n(x)&=A_n\int_{-\pi/2}^{\pi/2}f_1(\theta_1)\mathrm d\theta_1\cdots\int_{\beta_{n-1}}^{\theta_{n-2}}f_{n-1}(\theta_{n-1})\mathrm d\theta_{n-1}\delta\hspace{-0.25em}\left(x-\sum_{i=1}^{n-1}\cos\theta_i\right) \\
&=B_n\int_{-\pi/2}^{\pi/2}\mathrm d\theta_1\cdots\int_{\beta_{n-1}}^{\theta_{n-2}}\mathrm d\theta_{n-1}\delta\hspace{-0.25em}\left(x-\sum_{i=1}^{n-1}\cos\theta_i\right)
\end{aligned}
\]
式中 \(\beta_{n-1}=\max\hspace{-0.25em}\left(-\dfrac\pi2,\theta_{n-2}-\dfrac{2\pi}3\right)\),\(B_n=\dfrac{A_n}\pi\left(\dfrac3{4\pi}\right)^{n-2}\) 是一堆一化数使 \(\int_0^\infty a_n(x)\mathrm dx=1\)。易得 \(a_2(x)=B_2\int_{-\pi/2}^{\pi/2}\mathrm d\theta_1\delta(x-\cos\theta_1)=\dfrac{2B_2}{\sqrt{1-x^2}}\),\(B_2=\dfrac1\pi\)。
再往上你就一个一个慢慢算吧,文献里也懒得算了,那我就更懒得算了。
考查一个 \(\mathrm dh\) 厚的片片,有
\]
代入 \(\sigma=kp\),\(k\) 为应力的比例系数,得
\]
解出 Jassen 定律
\]
由此可以看出,所有颗粒的重量一小部分压在了底部,其余部分被侧壁支撑了。
以下的图是 Zhao H, An X, Wu Y, et al. Microscopic analyses of stress profile within confined granular assemblies[J]. AIP Advances, 2018, 8(7). 中对 Jassen 定律的拟合。
这张图就代表了,高度增大到一定程度,压力就不再变化了。
(此处省略一张图)
连续性方程
\]
式中 \(n\) 代表固相或气相。\(\varepsilon\) 为体积分数,\(\rho\) 为密度。动量方程
\]
气相应力张量
\]
固相应力张量
\]
固相压力、本体粘度、剪切粘度由颗粒流的动力学得到
P_s&=\varepsilon_s\rho_s\left[1+2(1+\mathrm e)\varepsilon_sg_0\right]\varTheta \\
\zeta_s&=\frac43\varepsilon_s^2\rho_sd_pg_0(1+\mathrm e)\sqrt\frac{\varTheta}\pi \\
\mu_s&=\frac{2\mu_{s,dil}}{(1+\mathrm e)g_0}\left[1+\frac45(1+\mathrm e)g_0\varepsilon_s\right]^2+\frac45\varepsilon_s^2\rho_sd_pg_0(1+\mathrm e)\sqrt\frac{\varTheta}\pi
\end{aligned}
\]
剪切粘度径向分布函数
\mu_{s,dil}&=\frac5{96}\rho_sd_p\sqrt{\pi\varTheta} \\
g_0&=\frac35\left[1-\left(\frac{\varepsilon_s}{\varepsilon_{s,\max}}\right)^{1/3}\right]^{-1}
\end{aligned}
\]
固相颗粒流动的湍动能
\]
式中的耗散项为
\gamma&=3\left(1-\mathrm e^2\right)\varepsilon_s^2\rho_sg_0\varTheta\left[\frac4{d_p}\sqrt\frac{\varTheta}\pi-\frac{\mathrm d}{\mathrm d\xi^i}\left(g^{il}U_l\right)_s\right] \\
\varGamma_\varTheta&=\frac{2\varGamma_{\varTheta,dil}}{(1+\mathrm e)g_0}\left[1+\frac65(1+\mathrm e)g_0\varepsilon_s\right]^2+2\varepsilon_s^2\rho_sd_pg_0(1+\mathrm e)\sqrt\frac{\varTheta}\pi \\[3ex]
\varGamma_{\varTheta,dil}&=\frac{35}{784}\rho_sd_p\sqrt{\pi\varTheta}
\end{aligned}
\]
在 \(\varepsilon_G\le0.8\) 时,曳力由 Ergun 方程给出,\(\varPhi\) 是一个形体参数
\]
在 \(\varepsilon_G>0.8\) 时,曳力就变成了简单的球体阻力
\]
雷诺数在 \(1000\) 以下时,可取 \(C_d=\dfrac{24}{\textit{Re}}\left(1+0.15\textit{Re}^{0.687}\right)\)。雷诺数在 \(1000\) 以上取 \(C_d=0.44\)。此时的雷诺数定义为 \(\textit{Re}=\dfrac{\left\lvert U_G-U_s\right\rvert\varepsilon_G\rho_Gd_p}{\mu_{G,l}}\)。
然后请观众朋友们自行完成它的数值解过程并与下图对照。左边是计算,右边是实验。
(此处省略两张图)
颗粒流 + Janssen 定律 + Bagnold 数的更多相关文章
- HDU - 3338 Kakuro Extension (最大流求解方格填数)
题意:给一个方格,每行每列都有对白色格子中的数之和的要求.每个格子中的数范围在[1,9]中.现在给出了这些要求,求满足条件的解. 分析:本题读入和建图比较恶心... 用网络流求解.建立源点S和汇点T, ...
- HDU3338 Kakuro Extension —— 最大流、方格填数类似数独
题目链接:https://vjudge.net/problem/HDU-3338 Kakuro Extension Time Limit: 2000/1000 MS (Java/Others) ...
- 杜绝假死,Tomcat容器做到自我保护,设置最大连接数(服务限流:tomcat请求数限制)
为了确保服务不会被过多的http长连接压垮,我们需要对tomcat设定个最大连接数,超过这个连接数的请求会拒绝,让其负载到其它机器.达到保护自己的同时起到连接数负载均衡的作用. 一.解决方案:修改to ...
- Tomcat容器做到自我保护,设置最大连接数(服务限流:tomcat请求数限制)
http://itindex.net/detail/58707-%E5%81%87%E6%AD%BB-tomcat-%E5%AE%B9%E5%99%A8 为了确保服务不会被过多的http长连接压垮,我 ...
- ERP通过JAVA流的形式将数据传到外围系统
1.ERP封装数据成XML写入数据库服务器指定文件 --指定相关文件信息 v_file_path := '/u01/test/app/fs1/EBSapps/appl/cux/12.0.0/forms ...
- RTP、RTCP及媒体流同步
转自:http://blog.163.com/liu_nongfu/blog/static/19079414220139169225333/ 一.流媒体简介 流媒体是指在internet中使用流媒体技 ...
- 关于对inputstream流的复制
今天因为项目需要,获取到一个inputstream后,可能要多次利用它进行read的操作.由于流读过一次就不能再读了,所以得想点办法. 而InputStream对象本身不能复制,因为它没有实现Clon ...
- 分布式环境下限流方案的实现redis RateLimiter Guava,Token Bucket, Leaky Bucket
业务背景介绍 对于web应用的限流,光看标题,似乎过于抽象,难以理解,那我们还是以具体的某一个应用场景来引入这个话题吧. 在日常生活中,我们肯定收到过不少不少这样的短信,“双11约吗?,千款….”,“ ...
- delphi 基础之三 文件流操作
文件流操作 Delphi操作流文件:什么是流?流,简单来说就是建立在面向对象基础上的一种抽象的处理数据的工具.在流中,定义了一些处理数据的基本操作,如读取数据,写入数据等,程序员是对流进行所有操作的, ...
- zoj 2760 How Many Shortest Path 最大流
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 Given a weighted directed graph ...
随机推荐
- js-对象创建
哥被逼得要当全栈工程师,今天练习了下各种对象的创建方式.代码较多参考了https://www.cnblogs.com/ImmortalWang/p/10517091.html 为了方便测试,整合了一个 ...
- Windows无法访问vsftpd
在搭建vsftpd的时候注意放行相应的服务,注意,是服务,不是端口!! 如果你简单的--add-port放行20和21端口,那么恭喜你,就是访问不了. 正确的方法是--add-service=ftp, ...
- yolov1-yolov5 网络结构&正负样本筛选&损失计算
学习yolo系列,最重要的,最核心的就是网络模型.正负样本匹配.损失函数等三个方面.本篇汇总了yolov1-yolov5等5个版本的相关知识点,主要看点是在yolo框架搭建.初学者可以通过相关篇章搭建 ...
- 算法金 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost 算法大全
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 决策树是一种简单直观的机器学习算法,它广泛应用于分类和回归问题中.它的核心思想是将复杂 ...
- HDOJ 6703 Array
HDOJ 6703 Array 题目 题目链接 array *Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K ...
- Linux 内核:GPIO子系统(1)软件框架
Linux 内核:GPIO子系统(1)软件框架 背景 在很多驱动开发中,GPIO用得很多,因此学习一下:也会顺便看看pinctrl 子系统. 原文(有删改):http://www.wowotech.n ...
- 【建议收藏】Go语言关键知识点总结
容器 数组和切片 在Go语言中,数组和切片是两个基本的数据结构,用于存储和操作一组元素.它们有一些相似之处,但也有许多不同之处.下面我们详细介绍数组和切片的特点.用法以及它们之间的区别. 数组 数组是 ...
- 使用C#对华为IPC摄像头二次开发(二)
上一篇我们实现了用SDK登录摄像头并实现预览(https://www.cnblogs.com/wdw984/p/13564195.html),这次我们实现通过SDK调用摄像头本身自带的人脸抓拍功能. ...
- documen.write 和 innerHTML 的区别?
document.write只能重绘整个页面,innerHTML可以重绘页面的一部分. 1. ducument.write使用举例html文档: <!doctype html> <h ...
- linux实现SSH免密登录设置,以及shell脚本实现
分享/朱季谦 最近在搭建linux集群,做了SSH免密登录的设置,正好把过程记录一下: 一.用搭建好的两台虚拟机做演示,A机器:192.168.200.129,B机器:192.168.200.128 ...