题目

给出\(x_n=(ax_{n-1}^2+bx_{n-1}+c)\bmod m\)

给出\(x_0.a,b,c,n,m\),求\(x_n\)

\(\text{Subtask 1:}n\leq 10^6,m\leq 10^9\)

\(\text{Subtask 2:}n\leq 10^9,m\leq 10^6\)

\(\text{Subtask 3:}n\leq 10^9,m\leq 10^9,2a|b,4ac+1=(b-1)^2,m是质数\)


分析

前两个子任务都很简单,第一个纯模拟,第二个循环节,第三个就有点难搞了,考虑用性质推式子

\(x_n=a(x_{n-1}+\frac{b}{2a})^2+\frac{4ac-b^2}{4a}\)

\(x_n=a(x_{n-1}+k)^2+\frac{(b-1)^2-b^2-1}{4a}=a(x_{n-1}+k)+{\frac{-2b}{4a}}=a(x_{n-1}+k)^2-k(k=\frac{b}{2a})\)

那么\(x_n+k=a(x_{n-1}+k)^2\)

设\(D_n=x_n+k\),通过推导可以得出\(D_n=a^{2^n-1}D_{0}^{2^n}\)

既然\(m\)是质数,就可以用费马小定理求解了


代码

#include <cstdio>
#define rr register
using namespace std;
int x0,a,b,c,n,mod;
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline signed nxig(int x){return mo(1ll*mo(1ll*a*x%mod,b)*x%mod,c);}
inline void baoli(){
for (rr int i=1;i<=n;++i) x0=nxig(x0);
printf("%d",x0);
}
inline void floyd1(){
rr int p[1000011],ans[1000011],rep,len,pos;
for (rr int i=0;i<mod;++i) p[i]=-1; p[x0]=0,ans[0]=x0;
for (rr int i=1;i<=mod;++i){
if (i>n) break;
x0=nxig(x0),ans[i]=x0;
if (p[x0]==-1) p[x0]=i;
else {rep=p[x0]; len=i-p[x0]; break;}
}
if (n<rep) pos=n;
else pos=rep+(n-rep)%len;
printf("%d",ans[pos]);
}
inline signed ksm(int x,int y,int mod){
rr int ans=1;
for (;y;y>>=1,x=1ll*x*x%mod)
if (y&1) ans=1ll*ans*x%mod;
return ans;
}
inline void floyd2(){
rr int k=b/(a*2);
x0+=k,x0=1ll*ksm(1ll*a*x0%mod,mo(ksm(2,n,mod-1),mod-1),mod)*x0%mod,x0=mo(x0,mod-k);
printf("%d",x0);
}
signed main(){
scanf("%d%d%d%d%d%d",&x0,&a,&b,&c,&n,&mod),
x0%=mod,a%=mod,b%=mod,c%=mod;
if (n<=1000000) baoli();
else{
if (mod<=1000000) floyd1();
else floyd2();
}
return 0;
}

#费马小定理#JZOJ 4015 数列的更多相关文章

  1. M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  2. 【bzoj5118】Fib数列2 费马小定理+矩阵乘法

    题目描述 Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2) 现给出N,求Fib(2^n). 输入 本题有多组数据.第一行一个整数T,表示数据 ...

  3. HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submi ...

  4. HDOJ 4549 M斐波那契数列 费马小定理+矩阵高速幂

    MF( i ) = a ^ fib( i-1 ) * b ^ fib ( i )   ( i>=3) mod 1000000007 是质数 , 依据费马小定理  a^phi( p ) = 1 ( ...

  5. HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Li ...

  6. [bzoj5118]Fib数列2_费马小定理_矩阵乘法

    Fib数列2 bzoj-5118 题目大意:求Fib($2^n$). 注释:$1\le n\le 10^{15}$. 想法:开始一看觉得一定是道神题,多好的题面啊?结果...妈的,模数是质数,费马小定 ...

  7. hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...

  8. Fib数列2 费马小定理+矩阵乘法

    题解: 费马小定理 a^(p-1)=1(mod p) 这里推广到矩阵也是成立的 所以我们可以对(2^n)%(p-1) 然后矩阵乘法维护就好了 模数较大使用快速乘

  9. bzoj5118: Fib数列2(费马小定理+矩阵快速幂)

    题目大意:求$fib(2^n)$ 就是求fib矩阵的(2^n)次方%p,p是质数,根据费马小定理有 注意因为模数比较大会爆LL,得写快速乘法... #include<bits/stdc++.h& ...

  10. nyoj1000_快速幂_费马小定理

    又见斐波那契数列 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 斐波那契数列大家应该很熟悉了吧.下面给大家引入一种新的斐波那契数列:M斐波那契数列. M斐波那契数列 ...

随机推荐

  1. mysql安装及增删改查操作---day35

    # ### mysql ''' 命令可以用tab来补全 d: D:\>cd MySQL5.7 D:\>cd D:\MySQL5.7\mysql-5.7.25-winx64\bin 直接切换 ...

  2. Jetpack Compose(1) —— Android 全新的 UI 框架

    写在前面 Jetpack Compose 已经不是什么新技术了,Google 早在 2019 年就推出 Jetpack Compose 的首个 alpha 版本,时至今日,相当大比例的国内 Andro ...

  3. 图数据库实操:用 Nebula Graph 破解成语版 Wordle 谜底

    本文首发于 Nebula Graph Community 公众号 春节期间如果有小伙伴玩过 Wordle 这个火爆社交媒体的猜词游戏,可能对成语版本的汉兜有所耳闻.在玩汉兜过程中,我发现用 Nebul ...

  4. C++ //栈 stack 容器 先进后出 不允许遍历

    1 //栈 stack 容器 先进后出 不允许遍历 2 3 4 #include<iostream> 5 #include<stack> 6 7 using namespace ...

  5. Springboot+POI实现excel生成下载进阶版(单元格合并,多Sheet,各种样式处理)

    上周五来了新的需求,基本上我写的还款那一系列流程不要了(我好悲伤,当时写了很久的,逻辑复杂的写的我很骄傲),新的变成如上所示(仅仅一部分),勾选几笔后生成一个excel表格,不同的融资编号所引发的那堆 ...

  6. QSAN: A Quantum-probability based Signed Attention Network for Explainable False Information Detection-CIKM20

    一.摘要 在社交媒体上的虚假信息检测具有挑战性,因为它通常需要烦冗的证据收集,但又缺乏可用的比较信息.从用户评论中挖掘出的线索作为群体智慧,可能对这项任务有相当大的好处. 然而,考虑到内容和评论的隐式 ...

  7. Spring Boot命令指定环境启动jar包

    原文地址:Spring Boot命令指定环境启动jar包 - Stars-One的杂货小窝 记下通过命令行的方式去改变spring boot项目中的环境配置信息 命令 项目中有以下配置 applica ...

  8. dotNet8 全局异常处理

    前言 异常的处理在我们应用程序中是至关重要的,在 dotNet 中有很多异常处理的机制,比如MVC的异常筛选器, 管道中间件定义try catch捕获异常处理亦或者第三方的解决方案Hellang.Mi ...

  9. 【ATCOER、D - ±1 Operation 2】前缀和+排序二分

    import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.Arrays; public cla ...

  10. python基础十(常用模块)

    一 time与datetime模块 1.time import time # 时间分为三种格式: # 1.时间戳:从1970年到现在经过的秒数 # 作用:用于时间间隔的计算 print(time.ti ...