题目链接:理想的正方形

比较明显的,我们可以用二维 ST 表解决,具体的二维 ST 表的实现,只需要知道一点:

对于 \(st[i][j][t]=max(i \sim i+2^t,j \sim j+2^t)\),表示的是如图所示的大正方形范围内的最值,它可以拆成从四个小正方形的左端点走 \(2^{t-1}\) 长的小正方形组成,预处理完直接查极差即可。

参照代码
#include <bits/stdc++.h>

// #pragma GCC optimize("Ofast,unroll-loops")
// #pragma GCC optimize(2) #define isPbdsFile #ifdef isPbdsFile #include <bits/extc++.h> #else #include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope> #endif using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}; template <typename T>
int disc(T* a, int n)
{
return unique(a + 1, a + n + 1) - (a + 1);
} template <typename T>
T lowBit(T x)
{
return x & -x;
} template <typename T>
T Rand(T l, T r)
{
static mt19937 Rand(time(nullptr));
uniform_int_distribution<T> dis(l, r);
return dis(Rand);
} template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
return (a % b + b) % b;
} template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
a %= c;
T1 ans = 1;
for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
return modt(ans, c);
} template <typename T>
void read(T& x)
{
x = 0;
T sign = 1;
char ch = getchar();
while (!isdigit(ch))
{
if (ch == '-')sign = -1;
ch = getchar();
}
while (isdigit(ch))
{
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
x *= sign;
} template <typename T, typename... U>
void read(T& x, U&... y)
{
read(x);
read(y...);
} template <typename T>
void write(T x)
{
if (typeid(x) == typeid(char))return;
if (x < 0)x = -x, putchar('-');
if (x > 9)write(x / 10);
putchar(x % 10 ^ 48);
} template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
write(x), putchar(c);
write(c, y...);
} template <typename T11, typename T22, typename T33>
struct T3
{
T11 one;
T22 tow;
T33 three; bool operator<(const T3 other) const
{
if (one == other.one)
{
if (tow == other.tow)return three < other.three;
return tow < other.tow;
}
return one < other.one;
} T3() { one = tow = three = 0; } T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
{
}
}; template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
if (x < y)x = y;
} template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
if (x > y)x = y;
} constexpr int N = 1e3 + 10;
constexpr int T = 11;
int stMin[N][N][T];
int stMax[N][N][T];
int a[N][N];
int n, m;
#define R1(x) (x+(1<<t-1)) inline void init()
{
int k = log2(max(n, m)) + 1;
forn(i, 1, n)
forn(j, 1, m)stMax[i][j][0] = stMin[i][j][0] = a[i][j];
forn(t, 1, k)
{
forn(i, 1, n-(1<<t)+1)
{
forn(j, 1, m-(1<<t)+1)
{
stMax[i][j][t] = max({
stMax[i][j][t - 1], stMax[R1(i)][j][t - 1], stMax[i][R1(j)][t - 1], stMax[R1(i)][R1(j)][t - 1]
});
stMin[i][j][t] = min({
stMin[i][j][t - 1], stMin[R1(i)][j][t - 1], stMin[i][R1(j)][t - 1], stMin[R1(i)][R1(j)][t - 1]
});
}
}
}
} #define R2(x) (x+len-(1<<k)) inline int query(const int x, const int y, const int len)
{
int k = log2(len);
int mx = max({stMax[x][y][k], stMax[R2(x)][y][k], stMax[x][R2(y)][k], stMax[R2(x)][R2(y)][k]});
int mi = min({stMin[x][y][k], stMin[R2(x)][y][k], stMin[x][R2(y)][k], stMin[R2(x)][R2(y)][k]});
return mx - mi;
} int x; inline void solve()
{
cin >> n >> m >> x;
forn(i, 1, n)
forn(j, 1, m)cin >> a[i][j];
init();
int ans = 1e9 + 7;
forn(i, x, n)
{
forn(j, x, m)
{
int L = i - x + 1, R = j - x + 1;
uMin(ans, query(L, R, x));
}
}
cout << ans;
} signed int main()
{
// MyFile
Spider
//------------------------------------------------------
// clock_t start = clock();
int test = 1;
// read(test);
// cin >> test;
forn(i, 1, test)solve();
// while (cin >> n, n)solve();
// while (cin >> test)solve();
// clock_t end = clock();
// cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}
\[时间复杂度 \ O(nm\log{\max{(n,m)}})
\]

P2216 [HAOI2007] 理想的正方形 题解的更多相关文章

  1. 【DP】【单调队列】洛谷 P2216 [HAOI2007]理想的正方形 题解

        算是单调队列的复习吧,不是很难 题目描述 有一个$a\times b$的整数组成的矩阵,现请你从中找出一个$n\times n$的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 ...

  2. 洛谷 P2216 [HAOI2007]理想的正方形

    P2216 [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一 ...

  3. P2216 [HAOI2007]理想的正方形 (单调队列)

    题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...

  4. P2216 [HAOI2007]理想的正方形 方法记录

    [HAOI2007]理想的正方形 题目描述 有一个 \(a \times b\) 的整数组成的矩阵,现请你从中找出一个 \(n \times n\) 的正方形区域,使得该区域所有数中的最大值和最小值的 ...

  5. 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列

    题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...

  6. 洛谷P2216 HAOI2007 理想的正方形 (单调队列)

    题目就是要求在n*m的矩形中找出一个k*k的正方形(理想正方形),使得这个正方形内最值之差最小(就是要维护最大值和最小值),显然我们可以用单调队列维护. 但是二维平面上单调队列怎么用? 我们先对行处理 ...

  7. P2216 [HAOI2007]理想的正方形

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...

  8. BZOJ1047:[HAOI2007]理想的正方形——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1047 https://www.luogu.org/problemnew/show/P2216#sub ...

  9. [洛谷P2216][HAOI2007]理想的正方形

    题目大意:有一个$a\times b$的矩阵,求一个$n\times n$的矩阵,使该区域中的极差最小. 题解:二维$ST$表,每一个点试一下是不是左上角就行了 卡点:1.用了一份考试时候写的二维$S ...

  10. [P2216] [HAOI2007]理想的正方形 「单调队列」

    思路:用单调队列分别维护行与列. 具体实现方法:是先用单调队列对每一行的值维护,并将a[][]每个区间的最大值,最小值分别存在X[][]和x[][]中. 那么X[][]与x[][]所存储的分别是1×n ...

随机推荐

  1. mybatis-plus数据批量插入

    为了提高数据处理效率,大量数据需要插入数据时可以采用批量数据插入的策略提高数据插入的效率. 如下是实现方法 1.代码结构 2.实体类 package little.tiger.one.applicat ...

  2. oppo和海康嵌入式软件工程师面经总结

    目录 海康 一面(3.23,35min) 自我介绍 项目介绍 你做的这个项目遇到了那些问题,如何解决的? 移植uboot,只做了移植吗? 用的那个文件系统? 移植过程中,网卡驱动做了那些工作? 写过那 ...

  3. C#排序算法3:插入排序

    插入排序是一种最简单的排序方法,它的基本思想是将一个记录插入到已经排好序的有序表中,从而一个新的.记录数增1的有序表. 原理: ⒈ 从第一个元素开始,该元素可以认为已经被排序 ⒉ 取出下一个元素,在已 ...

  4. nginx 工作原理及特点

    本文为博主原创,未经允许不得转载: nginx 简介:是一个高性能 HTTP 和 反向代理 服务器. Nginx 特点是占有内存少,并发能力强,事实上 Nginx 的并发能力确实在同类型的网页服务器中 ...

  5. 【Gerrit】操作技巧

    多笔提交依赖 1. cherry-pick 同步的多笔代码前后有依赖,如第M笔提交是基于第N笔修改的,直接同步过去会有冲突,所以同步M笔提交时需要基于N笔提交,即写入第N笔commit-id 上述填的 ...

  6. 【SHELL】查找文件并删除

    find . -iname file-name |xargs -I % rm -rf %

  7. 2023 SHCTF-校外赛道 PWN WP

    WEEK1 nc 连接靶机直接梭 hard nc 同样是nc直接连,但是出题人利用linux命令的特性,将部分flag放在了特殊文件中 利用ls -a查看所有文件,查看.gift,可以得到前半段 然后 ...

  8. [js] - 导航展出动画

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. Qt5.9 UI设计(六)——TitleBar功能实现

    前言 上一章介绍了ControlTreeWidget 与ControlTabWidget联动的功能,这一章我们将实现自定义 TitleBar 的功能 操作步骤 修改按键图标最大和最小值 右键按键图标, ...

  10. SqlSugar DbContext

    title: SqlSugar DbContext date: 2023-02-16 20:01:41 tags: SqlSugar categories: ORM description: 总结整理 ...