题目链接:理想的正方形

比较明显的,我们可以用二维 ST 表解决,具体的二维 ST 表的实现,只需要知道一点:

对于 \(st[i][j][t]=max(i \sim i+2^t,j \sim j+2^t)\),表示的是如图所示的大正方形范围内的最值,它可以拆成从四个小正方形的左端点走 \(2^{t-1}\) 长的小正方形组成,预处理完直接查极差即可。

参照代码
#include <bits/stdc++.h>

// #pragma GCC optimize("Ofast,unroll-loops")
// #pragma GCC optimize(2) #define isPbdsFile #ifdef isPbdsFile #include <bits/extc++.h> #else #include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope> #endif using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}; template <typename T>
int disc(T* a, int n)
{
return unique(a + 1, a + n + 1) - (a + 1);
} template <typename T>
T lowBit(T x)
{
return x & -x;
} template <typename T>
T Rand(T l, T r)
{
static mt19937 Rand(time(nullptr));
uniform_int_distribution<T> dis(l, r);
return dis(Rand);
} template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
return (a % b + b) % b;
} template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
a %= c;
T1 ans = 1;
for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
return modt(ans, c);
} template <typename T>
void read(T& x)
{
x = 0;
T sign = 1;
char ch = getchar();
while (!isdigit(ch))
{
if (ch == '-')sign = -1;
ch = getchar();
}
while (isdigit(ch))
{
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
x *= sign;
} template <typename T, typename... U>
void read(T& x, U&... y)
{
read(x);
read(y...);
} template <typename T>
void write(T x)
{
if (typeid(x) == typeid(char))return;
if (x < 0)x = -x, putchar('-');
if (x > 9)write(x / 10);
putchar(x % 10 ^ 48);
} template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
write(x), putchar(c);
write(c, y...);
} template <typename T11, typename T22, typename T33>
struct T3
{
T11 one;
T22 tow;
T33 three; bool operator<(const T3 other) const
{
if (one == other.one)
{
if (tow == other.tow)return three < other.three;
return tow < other.tow;
}
return one < other.one;
} T3() { one = tow = three = 0; } T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
{
}
}; template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
if (x < y)x = y;
} template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
if (x > y)x = y;
} constexpr int N = 1e3 + 10;
constexpr int T = 11;
int stMin[N][N][T];
int stMax[N][N][T];
int a[N][N];
int n, m;
#define R1(x) (x+(1<<t-1)) inline void init()
{
int k = log2(max(n, m)) + 1;
forn(i, 1, n)
forn(j, 1, m)stMax[i][j][0] = stMin[i][j][0] = a[i][j];
forn(t, 1, k)
{
forn(i, 1, n-(1<<t)+1)
{
forn(j, 1, m-(1<<t)+1)
{
stMax[i][j][t] = max({
stMax[i][j][t - 1], stMax[R1(i)][j][t - 1], stMax[i][R1(j)][t - 1], stMax[R1(i)][R1(j)][t - 1]
});
stMin[i][j][t] = min({
stMin[i][j][t - 1], stMin[R1(i)][j][t - 1], stMin[i][R1(j)][t - 1], stMin[R1(i)][R1(j)][t - 1]
});
}
}
}
} #define R2(x) (x+len-(1<<k)) inline int query(const int x, const int y, const int len)
{
int k = log2(len);
int mx = max({stMax[x][y][k], stMax[R2(x)][y][k], stMax[x][R2(y)][k], stMax[R2(x)][R2(y)][k]});
int mi = min({stMin[x][y][k], stMin[R2(x)][y][k], stMin[x][R2(y)][k], stMin[R2(x)][R2(y)][k]});
return mx - mi;
} int x; inline void solve()
{
cin >> n >> m >> x;
forn(i, 1, n)
forn(j, 1, m)cin >> a[i][j];
init();
int ans = 1e9 + 7;
forn(i, x, n)
{
forn(j, x, m)
{
int L = i - x + 1, R = j - x + 1;
uMin(ans, query(L, R, x));
}
}
cout << ans;
} signed int main()
{
// MyFile
Spider
//------------------------------------------------------
// clock_t start = clock();
int test = 1;
// read(test);
// cin >> test;
forn(i, 1, test)solve();
// while (cin >> n, n)solve();
// while (cin >> test)solve();
// clock_t end = clock();
// cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}
\[时间复杂度 \ O(nm\log{\max{(n,m)}})
\]

P2216 [HAOI2007] 理想的正方形 题解的更多相关文章

  1. 【DP】【单调队列】洛谷 P2216 [HAOI2007]理想的正方形 题解

        算是单调队列的复习吧,不是很难 题目描述 有一个$a\times b$的整数组成的矩阵,现请你从中找出一个$n\times n$的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 ...

  2. 洛谷 P2216 [HAOI2007]理想的正方形

    P2216 [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一 ...

  3. P2216 [HAOI2007]理想的正方形 (单调队列)

    题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...

  4. P2216 [HAOI2007]理想的正方形 方法记录

    [HAOI2007]理想的正方形 题目描述 有一个 \(a \times b\) 的整数组成的矩阵,现请你从中找出一个 \(n \times n\) 的正方形区域,使得该区域所有数中的最大值和最小值的 ...

  5. 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列

    题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...

  6. 洛谷P2216 HAOI2007 理想的正方形 (单调队列)

    题目就是要求在n*m的矩形中找出一个k*k的正方形(理想正方形),使得这个正方形内最值之差最小(就是要维护最大值和最小值),显然我们可以用单调队列维护. 但是二维平面上单调队列怎么用? 我们先对行处理 ...

  7. P2216 [HAOI2007]理想的正方形

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...

  8. BZOJ1047:[HAOI2007]理想的正方形——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1047 https://www.luogu.org/problemnew/show/P2216#sub ...

  9. [洛谷P2216][HAOI2007]理想的正方形

    题目大意:有一个$a\times b$的矩阵,求一个$n\times n$的矩阵,使该区域中的极差最小. 题解:二维$ST$表,每一个点试一下是不是左上角就行了 卡点:1.用了一份考试时候写的二维$S ...

  10. [P2216] [HAOI2007]理想的正方形 「单调队列」

    思路:用单调队列分别维护行与列. 具体实现方法:是先用单调队列对每一行的值维护,并将a[][]每个区间的最大值,最小值分别存在X[][]和x[][]中. 那么X[][]与x[][]所存储的分别是1×n ...

随机推荐

  1. (组合游戏)SG函数与SG定理详解

    有一段时间没记录知识类的博客了,这篇博客就说一下SG函数和SG定理吧 SG函数是用于解决博弈论中公平组合游戏(Impartial Combinatorial Games,ICG)问题的一种方法. 什么 ...

  2. vivo 云服务海量数据存储架构演进与实践

    一.写在开头 vivo 云服务提供给用户备份手机上的联系人.短信.便签.书签等数据的能力,底层存储采用 MySQL 数据库进行数据存储. 随着 vivo 云服务业务发展,云服务用户量增长迅速,存储在云 ...

  3. AIO异步通信。BIO同步阻塞式IO, NIO同步非阻塞通信。

    IO 什么是IO? 它是指计算机与外部世界或者一个程序与计算机的其余部分的之间的接口.它对于任何计算机系统都非常关键,因而所有 I/O 的主体实际上是内置在操作系统中的.单独的程序一般是让系统为它们完 ...

  4. 数字孪生 3D 风电场,智慧风电之陆上风电

    前言 "十四五"期间,在传统产业数字化升级和绿色改造领域.绿色低碳城镇化和现代城市建设领域.绿色低碳消费领域,和可再生能源或电力系统建设等领域,总投资可以达到近 45 万亿,平均每 ...

  5. 【调试】ftrace(三)trace-cmd和kernelshark

    之前使用ftrace的时候需要一系列的配置,使用起来有点繁琐,这里推荐一个ftrace的一个前端工具,它就是trace-cmd trace-cmd安装教程 安装trace-cmd及其依赖库 git c ...

  6. shell脚本(4)-格式化输入

    一.read命令 1.概念: 默认接受键盘的输入,回车符代表输入结束 2.read命令选项 -p:打印信息 -t:限定时间 -s:不回显 -n:输入字符个数 3.举例说明 (1)模拟登录 [root@ ...

  7. Java 子父类型集合之间的转换

    假设现在有这样一个方法,入参是父类型的集合参数,这是个通用方法,你需要共用它,你现在要传子类型集合进去,怎么办? class Animal { } class Dog extends Animal { ...

  8. spring,springBoot配置类型转化器Converter以及FastJsonHttpMessageConverter,StringHttpMessageConverter 使用

    转载请注明出处: https://i.cnblogs.com/posts/edit;postId=14045507 spring,spring boot 等框架项目通过@RequestBody,@Re ...

  9. 【SHELL】反斜杠解决多个shell实例扩展

    本意是想获取代码仓相对路径,代码如下 base_dir=`pwd` repo forall -c '{     user_dir=$(realpath --relative-to="$bas ...

  10. JMS微服务项目模板

    项目模板下载地址 vs2022模板:JMS.MicroServiceProjectTemplate2022.zip vs2019模板:JMS.MicroServiceHost.zip 说明 把压缩包解 ...