机器学习策略篇:详解开发集和测试集的大小(Size of dev and test sets)
在深度学习时代,设立开发集和测试集的方针也在变化。

可能听说过一条经验法则,在机器学习中,把取得的全部数据用70/30比例分成训练集和测试集。或者如果必须设立训练集、开发集和测试集,会这么分60%训练集,20%开发集,20%测试集。在机器学习的早期,这样分是相当合理的,特别是以前的数据集大小要小得多。所以如果总共有100个样本,这样70/30或者60/20/20分的经验法则是相当合理的。如果有几千个样本或者有一万个样本,这些做法也还是合理的。
但在现代机器学习中,更习惯操作规模大得多的数据集,比如说有1百万个训练样本,这样分可能更合理,98%作为训练集,1%开发集,1%测试集,用\(D\)和\(T\)缩写来表示开发集和测试集。因为如果有1百万个样本,那么1%就是10,000个样本,这对于开发集和测试集来说可能已经够了。所以在现代深度学习时代,有时拥有大得多的数据集,所以使用小于20%的比例或者小于30%比例的数据作为开发集和测试集也是合理的。而且因为深度学习算法对数据的胃口很大,可以看到那些有海量数据集的问题,有更高比例的数据划分到训练集里,那么测试集呢?
要记住,测试集的目的是完成系统开发之后,测试集可以帮评估投产系统的性能。方针就是,令的测试集足够大,能够以高置信度评估系统整体性能。所以除非需要对最终投产系统有一个很精确的指标,一般来说测试集不需要上百万个例子。对于的应用程序,也许想,有10,000个例子就能给足够的置信度来给出性能指标了,也许100,000个之类的可能就够了,这数目可能远远小于比如说整体数据集的30%,取决于有多少数据。

对于某些应用,也许不需要对系统性能有置信度很高的评估,也许只需要训练集和开发集。认为,不单独分出一个测试集也是可以的。事实上,有时在实践中有些人会只分成训练集和测试集,他们实际上在测试集上迭代,所以这里没有测试集,他们有的是训练集和开发集,但没有测试集。如果真的在调试这个集,这个开发集或这个测试集,这最好称为开发集。
不过在机器学习的历史里,不是每个人都把术语定义分得很清的,有时人们说的开发集,其实应该看作测试集。但如果只要有数据去训练,有数据去调试就够了。打算不管测试集,直接部署最终系统,所以不用太担心它的实际表现,觉得这也是很好的,就将它们称为训练集、开发集就好。然后说清楚没有测试集,这是不是有点不正常?绝对不建议在搭建系统时省略测试集,因为有个单独的测试集比较令安心。因为可以使用这组不带偏差的数据来测量系统的性能。但如果的开发集非常大,这样就不会对开发集过拟合得太厉害,这种情况,只有训练集和测试集也不是完全不合理的。不过一般不建议这么做。
总结一下,在大数据时代旧的经验规则,这个70/30不再适用了。现在流行的是把大量数据分到训练集,然后少量数据分到开发集和测试集,特别是当有一个非常大的数据集时。以前的经验法则其实是为了确保开发集足够大,能够达到它的目的,就是帮评估不同的想法,然后选出\(A\)还是\(B\)更好。测试集的目的是评估最终的成本偏差,只需要设立足够大的测试集,可以用来这么评估就行了,可能只需要远远小于总体数据量的30%。
所以希望本随笔能给们一点指导和建议,知道如何在深度学习时代设立开发和测试集。
机器学习策略篇:详解开发集和测试集的大小(Size of dev and test sets)的更多相关文章
- 机器学习入门06 - 训练集和测试集 (Training and Test Sets)
原文链接:https://developers.google.com/machine-learning/crash-course/training-and-test-sets 测试集是用于评估根据训练 ...
- 斯坦福大学公开课机器学习:advice for applying machine learning | model selection and training/validation/test sets(模型选择以及训练集、交叉验证集和测试集的概念)
怎样选用正确的特征构造学习算法或者如何选择学习算法中的正则化参数lambda?这些问题我们称之为模型选择问题. 在对于这一问题的讨论中,我们不仅将数据分为:训练集和测试集,而是将数据分为三个数据组:也 ...
- sklearn获得某个参数的不同取值在训练集和测试集上的表现的曲线刻画
from sklearn.svm import SVC from sklearn.datasets import make_classification import numpy as np X,y ...
- 随机切分csv训练集和测试集
使用numpy切分训练集和测试集 觉得有用的话,欢迎一起讨论相互学习~Follow Me 序言 在机器学习的任务中,时常需要将一个完整的数据集切分为训练集和测试集.此处我们使用numpy完成这个任务. ...
- sklearn学习3----模型选择和评估(1)训练集和测试集的切分
来自链接:https://blog.csdn.net/zahuopuboss/article/details/54948181 1.sklearn.model_selection.train_test ...
- sklearn——train_test_split 随机划分训练集和测试集
sklearn——train_test_split 随机划分训练集和测试集 sklearn.model_selection.train_test_split随机划分训练集和测试集 官网文档:http: ...
- Sklearn-train_test_split随机划分训练集和测试集
klearn.model_selection.train_test_split随机划分训练集和测试集 官网文档:http://scikit-learn.org/stable/modules/gener ...
- csv数据集按比例分割训练集、验证集和测试集,即分层抽样的方法
一.一种比较通俗理解的分割方法 1.先读取总的csv文件数据: import pandas as pd data = pd.read_csv('D:\BaiduNetdiskDownload\weib ...
- 将dataframe分割为训练集和测试集两部分
data = pd.read_csv("./dataNN.csv",',',error_bad_lines=False)#我的数据集是两列,一列字符串,一列为0,1的labelda ...
- 用python制作训练集和测试集的图片名列表文本
# -*- coding: utf-8 -*- from pathlib import Path #从pathlib中导入Path import os import fileinput import ...
随机推荐
- read IEEE standard for verilog(3)
read IEEE std for verilog 1.阅读准备 在阅读的第二部分读到了lexical conventions,这次计划读一节.也就是把lexical conventions读完. 2 ...
- Circle Loss:从统一的相似性对的优化角度进行深度特征学习 | CVPR 2020 Oral
论文提出了Circle loss,不仅能够对类内优化和类间优化进行单独地处理,还能根据不同的相似度值调整对应的梯度.总体而言,Circle loss更灵活,而且优化目标更明确,在多个实验上都有较好的表 ...
- KingbaseES 中select for update语句引起的锁问题
背景 客户现场执行压测时候,发生周期性的TPS大幅下降,通过查看kwr报告发现DBcpu时间占DBtime时间很少,百分之90的DBtime花费在tuple锁等待上,等待事件类型是lock. 等待时间 ...
- 小师妹学JavaIO之:File文件系统
目录 简介 文件权限和文件系统 文件的创建 代码中文件的权限 总结 简介 小师妹又遇到难题了,这次的问题是有关文件的创建,文件权限和文件系统相关的问题,还好这些问题的答案都在我的脑子里面,一起来看看吧 ...
- web.xml最新配置文件
<?xml version="1.0" encoding="UTF-8"?> <web-app xmlns="http://xmln ...
- 新手真的别再用过时的jenkins freestyle了,10分钟教你搞定快速编写jenksinfile,快速离线调试
Pipeline是一套运行于jenkins上的工作流框架,将原本独立运行于单个或者多个节点的任务连接起来,实现单个任务难以完成的复杂流程编排与可视化.它通过Domain Specific Langua ...
- 【资料包】HDC.Together 2023精选Codelabs指南现已上线(内有活动)
今年HDC.Together 2023的Codelabs挑战系列活动如期而至,众多开发者齐聚一堂,积极参与.本次赛题中部分Codelabs已在官网上线详细操作指南,让我们与众多coders一起探索代 ...
- 【转】CentOS安装VMware Tools
[转]CentOS安装VMware Tools VMware 是非常好的虚拟机软件.如果系统安装了VMware Tools以后对虚拟机的性能会提升很多的.下面是如果在CentOS系统内安装VMware ...
- 房屋设计H51图纸
- 力扣341(java)-扁平化嵌套列表迭代器(中等)
题目: 给你一个嵌套的整数列表 nestedList .每个元素要么是一个整数,要么是一个列表:该列表的元素也可能是整数或者是其他列表.请你实现一个迭代器将其扁平化,使之能够遍历这个列表中的所有整数. ...