本文分享自华为云社区《多模态对比语言图像预训练CLIP:打破语言与视觉的界限》,作者:汀丶。

一种基于多模态(图像、文本)对比训练的神经网络。它可以在给定图像的情况下,使用自然语言来预测最相关的文本片段,而无需为特定任务进行优化。CLIP的设计类似于GPT-2和GPT-3,具备出色的零射击能力,可以应用于多种多模态任务。

  • 多模态对比语言图像预训练(CLIP)是一种神经网络模型,它通过多模态对比训练来学习图像和文本之间的关联。与传统的单模态预训练模型不同,CLIP能够同时处理图像和文本,从而更好地理解它们之间的语义关系。
  • CLIP的设计类似于GPT-2和GPT-3,是一种自回归语言模型。它通过对比学习来学习图像和文本之间的映射关系。在训练过程中,CLIP会接收一张图像和一个与之相关的文本片段,并学习如何将这两个模态的信息进行关联。通过这种方式,CLIP可以学会将图像与相应的文本片段进行匹配,从而在给定图像的情况下,使用自然语言来预测最相关的文本片段。
  • 由于CLIP采用了对比学习的方法,它可以在无需为特定任务进行优化的前提下,表现出色地完成多种多模态任务。这使得CLIP成为了一种通用的多模态预训练模型,可以广泛应用于图像标注、视觉问答、图像生成等领域。

CLIP(对比语言图像预训练)是一种基于多种(图像、文本)对进行训练的神经网络。在给定图像的情况下,它可以用自然语言来预测最相关的文本片段,而无需直接针对任务进行优化,类似于GPT-2和gpt - 3的零射击能力。我们发现CLIP在不使用任何原始的1.28M标记示例的情况下,在ImageNet“零射击”上匹配原始ResNet50的性能,克服了计算机视觉中的几个主要挑战。

1.安装

ftfy

regex

tqdm

torch

torchvision
$ conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0 $ pip install ftfy regex tqdm $ pip install git+https://github.com/openai/CLIP.git

Replace cudatoolkit=11.0 above with the appropriate CUDA version on your machine or cpuonly when installing on a machine without a GPU.

import torch

import clip

from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"

model, preprocess = clip.load("ViT-B/32", device=device)

image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device)

text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device)

with torch.no_grad():

image_features = model.encode_image(image)

text_features = model.encode_text(text)

logits_per_image, logits_per_text = model(image, text)

probs = logits_per_image.softmax(dim=-1).cpu().numpy()

print("Label probs:", probs) # prints: [[0.9927937 0.00421068 0.00299572]]
  • API

The CLIP module clip provides the following methods:

  • clip.available_models()

Returns the names of the available CLIP models.

  • clip.load(name, device=..., jit=False)

返回模型和模型所需的TorchVision转换,由’ clip.available_models() ‘返回的模型名指定。它将根据需要下载模型。’ name '参数也可以是本地检查点的路径。

可以选择性地指定运行模型的设备,默认是使用第一个CUDA设备(如果有的话),否则使用CPU。当’ jit ‘为’ False '时,将加载模型的非jit版本。

  • clip.tokenize(text: Union[str, List[str]], context_length=77)

返回一个LongTensor,其中包含给定文本输入的标记化序列。这可以用作模型的输入

’ clip.load() '返回的模型支持以下方法:

  • model.encode_image(image: Tensor)

给定一批图像,返回由CLIP模型的视觉部分编码的图像特征。

  • model.encode_text(text: Tensor)

给定一批文本tokens,返回由CLIP模型的语言部分编码的文本特征。

  • model(image: Tensor, text: Tensor)

给定一批图像和一批文本标记,返回两个张量,包含对应于每个图像和文本输入的logit分数。其值是对应图像和文本特征之间的相似度的余弦值,乘以100。

2.案例介绍

2.1 零样本能力

下面的代码使用CLIP执行零样本预测,如本文附录B所示。本例从CIFAR-100数据集获取图像,并在数据集的100个文本标签中预测最可能的标签。

import os

import clip

import torch

from torchvision.datasets import CIFAR100

#Load the model

device = "cuda" if torch.cuda.is_available() else "cpu"

model, preprocess = clip.load('ViT-B/32', device)

#Download the dataset

cifar100 = CIFAR100(root=os.path.expanduser("~/.cache"), download=True, train=False)

#Prepare the inputs

image, class_id = cifar100[3637]

image_input = preprocess(image).unsqueeze(0).to(device)

text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in cifar100.classes]).to(device)

#Calculate features

with torch.no_grad():

image_features = model.encode_image(image_input)

text_features = model.encode_text(text_inputs)

#Pick the top 5 most similar labels for the image

image_features /= image_features.norm(dim=-1, keepdim=True)

text_features /= text_features.norm(dim=-1, keepdim=True)

similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)

values, indices = similarity[0].topk(5)

#Print the result

print("\nTop predictions:\n")

for value, index in zip(values, indices):

print(f"{cifar100.classes[index]:>16s}: {100 * value.item():.2f}%")

输出将如下所示(具体数字可能因计算设备的不同而略有不同):

Top predictions:

snake: 65.31%

turtle: 12.29%

sweet_pepper: 3.83%

lizard: 1.88%

crocodile: 1.75%

Note that this example uses the encode_image() and encode_text() methods that return the encoded features of given inputs.

2.2 Linear-probe 评估

The example below uses scikit-learn to perform logistic regression on image features.

import os

import clip

import torch

import numpy as np

from sklearn.linear_model import LogisticRegression

from torch.utils.data import DataLoader

from torchvision.datasets import CIFAR100

from tqdm import tqdm

#Load the model

device = "cuda" if torch.cuda.is_available() else "cpu"

model, preprocess = clip.load('ViT-B/32', device)

#Load the dataset

root = os.path.expanduser("~/.cache")

train = CIFAR100(root, download=True, train=True, transform=preprocess)

test = CIFAR100(root, download=True, train=False, transform=preprocess)

def get_features(dataset):

all_features = []

all_labels = []

with torch.no_grad():

for images, labels in tqdm(DataLoader(dataset, batch_size=100)):

features = model.encode_image(images.to(device))

all_features.append(features)

all_labels.append(labels)

return torch.cat(all_features).cpu().numpy(), torch.cat(all_labels).cpu().numpy()

#Calculate the image features

train_features, train_labels = get_features(train)

test_features, test_labels = get_features(test)

#Perform logistic regression

classifier = LogisticRegression(random_state=0, C=0.316, max_iter=1000, verbose=1)

classifier.fit(train_features, train_labels)

#Evaluate using the logistic regression classifier

predictions = classifier.predict(test_features)

accuracy = np.mean((test_labels == predictions).astype(float)) * 100.

print(f"Accuracy = {accuracy:.3f}")

Note that the C value should be determined via a hyperparameter sweep using a validation split.

3.更多资料参考

  • OpenCLIP: includes larger and independently trained CLIP models up to ViT-G/14
  • Hugging Face implementation of CLIP: for easier integration with the HF ecosystem

点击关注,第一时间了解华为云新鲜技术~

带你认识一下多模态对比语言图像预训练CLIP的更多相关文章

  1. html标记语言 --图像标记

    html标记语言 --图像标记 三.图像标记 1.使用方法 <img src="路径/文件名.格式" width="属性值" height="属 ...

  2. 【中文版 | 论文原文】BERT:语言理解的深度双向变换器预训练

    BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 谷歌AI语言组论文<BERT:语言 ...

  3. CNN基础二:使用预训练网络提取图像特征

    上一节中,我们采用了一个自定义的网络结构,从头开始训练猫狗大战分类器,最终在使用图像增强的方式下得到了82%的验证准确率.但是,想要将深度学习应用于小型图像数据集,通常不会贸然采用复杂网络并且从头开始 ...

  4. C语言中预定义符 __FILE__, __LINE__, __FUNCTION__, __DATE__, __TIME__ 的使用演示

    本文演示了C语言中预定义符 __FILE__, __LINE__, __FUNCTION__, __DATE__, __TIME__ 的使用. 这几个预定义符的名称就没必要再介绍了,顾名思义嘛. // ...

  5. [Swift通天遁地]九、拔剑吧-(12)创建Preview-Transition图像预览界面

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  6. Docs-.NET-C#-指南-语言参考-预处理器指令:#pragma checksum(C# 参考)

    ylbtech-Docs-.NET-C#-指南-语言参考-预处理器指令:#pragma checksum(C# 参考) 1.返回顶部 1. #pragma checksum(C# 参考) 2015/0 ...

  7. Docs-.NET-C#-指南-语言参考-预处理器指令:#pragma warning(C# 参考)

    ylbtech-Docs-.NET-C#-指南-语言参考-预处理器指令:#pragma warning(C# 参考) 1.返回顶部 1. #pragma warning(C# 参考) 2015/07/ ...

  8. Docs-.NET-C#-指南-语言参考-预处理器指令:#pragma(C# 参考)

    ylbtech-Docs-.NET-C#-指南-语言参考-预处理器指令:#pragma(C# 参考) 1.返回顶部 1. #pragma(C# 参考) 2015/07/20 #pragma 为编译器给 ...

  9. Docs-.NET-C#-指南-语言参考-预处理器指令:#endregion(C# 参考)

    ylbtech-Docs-.NET-C#-指南-语言参考-预处理器指令:#endregion(C# 参考) 1.返回顶部 1. #endregion(C# 参考) 2015/07/20 #endreg ...

  10. Docs-.NET-C#-指南-语言参考-预处理器指令:#region(C# 参考)

    ylbtech-Docs-.NET-C#-指南-语言参考-预处理器指令:#region(C# 参考) 1.返回顶部 1. #region(C# 参考) 2015/07/20 利用 #region,可以 ...

随机推荐

  1. WPF 中引入依赖注入(.NET 通用主机)

    WPF 中引入依赖注入(.NET 通用主机) 在网上看到的文章都是通过 App.cs 中修改配置进行的,这样侵入性很高而且服务主机是通过 App 启动时加载的而不是服务主机加载的 App 有一点违反原 ...

  2. 基于matomo实现业务数据埋点采集上报

    matomo是一款Google-analytics数据埋点采集上报的平替方案,可保护您的数据和客户的隐私:正如它官网的slogan: Google Analytics alternative that ...

  3. 关于Halcon中variation_model模型的快速解读。

    十一期间在家用期间研读了下Halcon的variation_model模型,基本上全系复现了他的所有技术要求和细节,这里做个记录. 其实这个模型的所有原理都不是很复杂的,而且Halcon中的帮助文档也 ...

  4. js排序算法--冒泡排序

    <!DOCTYPE html> <html> <head> <title></title> </head> <body&g ...

  5. P4870 [BalticOI 2009 Day1]甲虫 题解

    题目链接 简要题意 在一个数轴上有 \(n\) 滴露水,每滴露水初始水量为 \(m\),每秒会蒸发一滴水,一个甲虫初始在原点,速度为 1,水能瞬间喝完,问它最多能喝到几滴水. 题目分析 对于这种移动区 ...

  6. 在VM虚拟机中安装FTP服务

    自用的话,建议先关掉防火墙 systemctl stop firewalld #关闭防火墙 systemctl disable firewalld.service #设置开机禁用防火墙 systemc ...

  7. 《实现领域驱动设计》笔记——DDD入门

    设计不只是感观,设计就是产品的工作方式. 我们的目标应该是创造一个可观测的.可伸缩的.组织良好的软件模型. DDD同时提供了战略上的战术上的建模工具. 我能DDD吗? DDD首先并不是关于技术的,而是 ...

  8. Cadence SPB 22.1 --学习基础01Day

    1.电路图设计 ①.原理图设计 原理图符号-->原理图库:代替实际电子元器件的符号,主要就是引脚数目.引脚序号与实物对应: ②.PCB设计 PCB符合-->PCB封装库:电子元器件的各种实 ...

  9. 嵌入式linux主机通过分区镜像生成固件,DD备份分区后打包成固件,px30刷机教程 ,rockchip刷机教程

    我这边有一个工控路由器因为刷机变砖了,网上下载不到固件,自己暂时还没有搞过编译.我找到了同型号的路由器,把它的系统制作成镜像. 具体操作分为三步: 第一步,直接用DD命令备份了几个分区,分区我暂时还不 ...

  10. Gradio-Lite: 完全在浏览器里运行的无服务器 Gradio

    Gradio 是一个经常用于创建交互式机器学习应用的 Python 库.在以前按照传统方法,如果想对外分享 Gradio 应用,就需要依赖服务器设备和相关资源,而这对于自己部署的开发人员来说并不友好. ...