SLS:整层剪掉!基于降维特征聚类的PETL模型剪枝新方法 | ECCV'24
来源:晓飞的算法工程笔记 公众号,转载请注明出处
论文: Straightforward Layer-wise Pruning for More Efficient Visual Adaptation

创新点
- 提出了一种针对
PETL模型的剪枝方法SLS(Straightforward Layer-wiSe Pruning method),证明在下游数据集与预训练数据集之间存在显著差距时,PETL转移后的模型中存在大量冗余参数。 - 提出了一种直观的特征级分析方法,为评估结构剪枝参数的重要性提供了一种新的视角。
SLS在VTAB-1k基准测试中,使用相同的剪枝参数数量,以简单的策略在模型存储、准确性和速度上超越了当前主流的结构剪枝方法DepGraph。
内容概述

参数高效迁移学习(PETL)旨在使用有限的参数调整大型预训练模型。虽然大多数PETL方法在训练过程中仅更新添加或选择的参数并冻结预训练权重,但因为PETL难以回传梯度调整顶层的参数,往往会导致冗余的模型结构。结构剪枝有效降低了模型冗余,但常见的剪枝方法通常会导致存储参数的过度增加,因为不同剪枝率和数据会产生不同的剪枝结构。
针对存储参数量的问题,论文提出了一种直接的层级剪枝方法SLS(Straightforward Layer-wiSe Pruning method),用于剪枝PETL模型。SLS通过从特征角度评估每一层的参数,并利用聚类度量通过t-SNE获得的低维空间中的聚类现象来评估当前层参数,SLS促进了基于信息的剪枝决策。逐层剪枝专注于存储剪枝索引,解决了存储量的问题。
值得注意的是,主流的逐层剪枝方法可能不适合评估PETL转移模型中层的重要性,因为大多数参数是预训练的,并且与下游数据集的相关性有限。与最先进的PETL方法进行的比较分析表明,剪枝模型在模型吞吐量和准确性之间实现了显著的平衡。此外,SLS有效减少了由于不同剪枝结构而产生的存储开销,同时在与传统剪枝方法相比时提升了剪枝模型的准确性和速度。
SLS
以往的研究表明,较低层通常捕捉一般特征,而较高层则专注于特定特征。基于这一理解以及在PETL模型中冻结预训练网络参数的局限性,论文认为当下游数据分布与预训练数据分布之间存在显著差异时,PETL转移的模型深层将包含大量冗余参数。于是论文打算动态识别并剪除这些冗余参数。为了确保剪枝过程的有效性,必须满足以下关键标准:
保持与
PETL转移方法相同的存储参数数量。预测冗余参数而无需额外的训练。
相关算法
降维算法
t-SNE:给定一组 \(d\) 维输入特征 \(X=\{x_1,x_2,...,x_n\}\in \mathbb{R}^{n\times d}\) ,为 \(X\) 计算一组 \(s\) 维嵌入,记作 \(Y=\{y_1,y_2,...,y_n\}\in \mathbb{R}^{n\times s}\) 。其中 \(s\ll d\) ,通常为2或3以便于可视化。首先使用联合概率来度量输入 \(X\) 中 \(x_i\) 和 \(x_j\) 之间的相似性,随后调整随机初始化 \(Y\),使 \(Y\) 元素之间的相似性与 \(X\) 对应元素之间的相似性一致。聚类算法指标
SC_Index(Silhouette Coefficient Index):给定一组聚类结果 \(X=\{x_1,x_2,...,x_n\}\) ,对于某一点 \(x_i\) ,定义 \(a(i)\) 为其所在聚类中剩余点与 \(x_i\) 之间的平均距离, \(b(i)\) 为 \(x_i\) 与最近聚类中所有点之间的平均距离。\[\begin{equation}
\bar{s}=\frac{1}{n}\sum_{i=1}^n\frac{b(i)-a(i)}{\max(a(i),b(i))}
\end{equation}
\]
层级剪枝不会增加存储参数数量
SLS的预测不涉及额外的参数引用,采用基于现有特征的聚类方法预测剪枝层索引表示为 \(Index_j\) 直接进行剪枝。因此,通过SLS剪枝的模型不会产生任何额外的存储开销。
根据各层的中间特征做出剪枝决定

使用降维特征的聚类程度SC_Index来评估层特征,该方法不引入额外的监督训练。如图2所示,在适当的设置下,模型中当前层的分类准确率与降维特征的SC_Index之间存在明显的相关性。

论文提出了特征评估模块 (FEM) 来评估来自层 \(L_i\) 的特征。如图3所示,FEM从层 \(L_i\) 的输出 \([x_i,e_i]\) 中提取cls_token \(x_i\) 来表示当前特征,使用t-SNE算法将 \(x_i\) 降维到 \(x_i' \in \mathbb{R}^{B\times2}\) 。随后,通过结合对应于当前输入的标签 \(\in \mathbb{R}^{B\times1}\) ,得到一个具有 \(p\) 个类别的聚类结果 \(C\) ,其中 \(p\) 是当前数据集中的类别数量。最后,计算与 \(C\) 对应的值 \(a(i)\) 和 \(b(i)\) ,确定当前层特征的评估值 \(SC\_index_i\) 。
对于一个具有 \(N\) 层的模型,设 \(\mathbf{\alpha}\) 为一个超参数,控制SLS剪枝的程度。当前数据集上剪枝层数的阈值 \(T\) 定义为
\label{eq11}
T=\mathbf{\alpha} \times SC\_Index_N
\end{equation}
\]
在模型的剪枝过程中,从最高层向下遍历。当第 \(i^{th}\) 层特征的评估值 \(SC\_Index_i\) 低于阈值 \(T\) 时,停止遍历循环,并剪掉从 \(i+2\) 到 \(N\) 的层。这一设计的动机在于,当第 \(i^{th}\) 层特征的评估值低于与顶部层特征评估相比的某个阈值时,分类头将无法有效地区分当前特征。因此, \({i+1}^{th}\) 层的输出特征是分类头能够很好地区分的最低层,剪掉从 \(i+1\) 向下的层会对模型的性能产生显著影响。
主要实验结果



如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】

SLS:整层剪掉!基于降维特征聚类的PETL模型剪枝新方法 | ECCV'24的更多相关文章
- 【模型压缩】MetaPruning:基于元学习和AutoML的模型压缩新方法
论文名称:MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning 论文地址:https://arxiv.org/ ...
- 基于SURF特征的图像与视频拼接技术的研究和实现(一)
基于SURF特征的图像与视频拼接技术的研究和实现(一) 一直有计划研究实时图像拼接,但是直到最近拜读西电2013年张亚娟的<基于SURF特征的图像与视频拼接技术的研究和实现>,条 ...
- 基于Haar特征Adaboost人脸检测级联分类
基于Haar特征Adaboost人脸检测级联分类 基于Haar特征Adaboost人脸检测级联分类,称haar分类器. 通过这个算法的名字,我们能够看到这个算法事实上包括了几个关键点:Haar特征.A ...
- 业务接口+UI层的设计(基于Castle实现的Repository)
业务接口+UI层的设计(基于Castle实现的Repository) Repository层设计的文章见:[http://www.cnblogs.com/yomho/p/3297042.html] ...
- 基于SIFT特征的全景图像拼接
基于SIFT特征的全景图像拼接 分类: image Machine learning2013-07-05 13:33 2554人阅读 评论(3) 收藏 举报 基于SIFT特征的全景图像拼接 分类: 计 ...
- 基于Haar特征的Adaboost级联人脸检测分类器
基于Haar特征的Adaboost级联人脸检测分类器基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征 ...
- 【HEVC帧间预测论文】P1.1 基于运动特征的HEVC快速帧间预测算法
基于运动特征的 HEVC 快速帧间预测算法/Fast Inter-Frame Prediction Algorithm for HEVC Based on Motion Features <HE ...
- OpenCV中基于Haar特征和级联分类器的人脸检测
使用机器学习的方法进行人脸检测的第一步需要训练人脸分类器,这是一个耗时耗力的过程,需要收集大量的正负样本,并且样本质量的好坏对结果影响巨大,如果样本没有处理好,再优秀的机器学习分类算法都是零. 今年3 ...
- OpenCV中基于HOG特征的行人检测
目前基于机器学习方法的行人检测的主流特征描述子之一是HOG(Histogram of Oriented Gradient, 方向梯度直方图).HOG特征是用于目标检测的特征描述子,它通过计算和统计图像 ...
- 照片美妆---基于Haar特征的Adaboost级联人脸检测分类器
原文:照片美妆---基于Haar特征的Adaboost级联人脸检测分类器 本文转载自张雨石http://blog.csdn.net/stdcoutzyx/article/details/3484223 ...
随机推荐
- VideoGeneration
Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets 主要贡献:设计了一套数据清洗策略来清洗大 ...
- 23暑假友谊赛No.2
23暑假友谊赛No.2 A-雨_23暑假友谊赛No.2 (nowcoder.com) #include <bits/stdc++.h> using namespace std; signe ...
- redis集群之哨兵模式
redis集群之哨兵模式 1.集群部署 安装配置可参考一下地址: https://www.cnblogs.com/zhoujinyi/p/5569462.html 2.与springboot集成 这里 ...
- 用GDI+旋转多边形来绘制一个时钟摸拟小程序
效果图 在头文件类中声明变量 TCHAR m_dayStr[4]; // 日期 TCHAR m_weekStr[4]; // 星期 Gdiplus::Font* m_pFont; // 字体 Gdip ...
- 【YashanDB知识库】YAS-00103 no free block in dictionary cache
[问题分类]功能使用 [关键字]YAS-00103,no free block in dictionary cache [问题描述]执行union all 太多子查询导致报错,例子如下: [问题原因分 ...
- BOM – Window.matchMedia
参考 Youtube – Detecting Screen Size and OS Dark Mode with matchMedia() - JavaScript Tutorial 介绍 CSS 有 ...
- CSS – 网页设计 Web Design
前言 Web Design 很广很深. 我记得许多年前第一次想介入设计工作 (我是后端工程师), 我就上网搜索了一下. 就看见了乔布斯著名的一句话: Design is not just what i ...
- Driud——数据库连接池的使用
Druid数据库连接池的使用 1. 导入 jar 包 jar包下载:Central Repository: com/alibaba/druid/1.1.12 (maven.org) 导入项目中:(复制 ...
- MySQL linux下安装,配置,免密登录与基本认识
目录 MySQL卸载 环境 查看是否已安装MySQL 卸载mysql服务 查看是否卸载干净 MySQL安装 查看linux版本 选择MySQL版本 获取mysql官方yum源 rpm安装mysql官方 ...
- Java如何解决同时出库入库订单号自动获取问题
在Java中处理同时出库和入库的订单号自动获取问题,通常涉及到多线程环境下的并发控制.为了确保订单号的唯一性和连续性,我们可以使用多种策略,如数据库的自增ID.分布式锁.或者利用Java的并发工具类如 ...