有的时候,一些时刻或连续时间段内的值无法采集到,或者本身就没有值,本文将介绍如何处理这种情况。

一般而言,有以下几种方法:

  • 对所有的缺失值用零填充。
  • 前向填充:比如用周一的值填充缺失的周二的值
  • 后向填充:比如用周二的值填充缺失的周一的值
  • 采用n最近邻均值法填充:比如n取2,则用t-2,t-1,t+1,t+2时刻的平均值来填充缺失的t时刻的值。
  • 单线性插值:取某个缺失值的时间点,做一条垂线相较于左右时刻的值的连接线,得到的交点作为填充值。类似下图:

对应的python代码实现:

from sklearn.metrics import mean_squared_error
df_orig = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'], index_col='date').head(100)
df = pd.read_csv('datasets/a10_missings.csv', parse_dates=['date'], index_col='date') fig, axes = plt.subplots(7, 1, sharex=True, figsize=(10, 12))
plt.rcParams.update({'xtick.bottom' : False}) ## 1. Actual -------------------------------
df_orig.plot(title='Actual', ax=axes[0], label='Actual', color='red', style=".-")
df.plot(title='Actual', ax=axes[0], label='Actual', color='green', style=".-")
axes[0].legend(["Missing Data", "Available Data"]) ## 2. Forward Fill --------------------------
df_ffill = df.ffill()
error = np.round(mean_squared_error(df_orig['value'], df_ffill['value']), 2)
df_ffill['value'].plot(title='Forward Fill (MSE: ' + str(error) +")", ax=axes[1], label='Forward Fill', style=".-") ## 3. Backward Fill -------------------------
df_bfill = df.bfill()
error = np.round(mean_squared_error(df_orig['value'], df_bfill['value']), 2)
df_bfill['value'].plot(title="Backward Fill (MSE: " + str(error) +")", ax=axes[2], label='Back Fill', color='firebrick', style=".-") ## 4. Linear Interpolation ------------------
df['rownum'] = np.arange(df.shape[0])
df_nona = df.dropna(subset = ['value'])
f = interp1d(df_nona['rownum'], df_nona['value'])
df['linear_fill'] = f(df['rownum'])
error = np.round(mean_squared_error(df_orig['value'], df['linear_fill']), 2)
df['linear_fill'].plot(title="Linear Fill (MSE: " + str(error) +")", ax=axes[3], label='Cubic Fill', color='brown', style=".-") ## 5. Mean of 'n' Nearest Past Neighbors ------def knn_mean(ts, n):
out = np.copy(ts)
for i, val in enumerate(ts):
if np.isnan(val):
n_by_2 = np.ceil(n/2)
lower = np.max([0, int(i-n_by_2)])
upper = np.min([len(ts)+1, int(i+n_by_2)])
ts_near = np.concatenate([ts[lower:i], ts[i:upper]])
out[i] = np.nanmean(ts_near)
return out df['knn_mean'] = knn_mean(df.value.values, 8)
error = np.round(mean_squared_error(df_orig['value'], df['knn_mean']), 2)
df['knn_mean'].plot(title="KNN Mean (MSE: " + str(error) +")", ax=axes[5], label='KNN Mean', color='tomato', alpha=0.5, style=".-")

ok,本篇就这么多内容啦~,感谢阅读O(∩_∩)O。

用python做时间序列预测五:时间序列缺失值处理的更多相关文章

  1. python做中学(五)多线程的用法

    多线程类似于同时执行多个不同程序,多线程运行有如下优点: 使用线程可以把占据长时间的程序中的任务放到后台去处理. 用户界面可以更加吸引人,比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条 ...

  2. 用python做时间序列预测一:初识概念

    利用时间序列预测方法,我们可以基于历史的情况来预测未来的情况.比如共享单车每日租车数,食堂每日就餐人数等等,都是基于各自历史的情况来预测的. 什么是时间序列? 时间序列,是指同一个变量在连续且固定的时 ...

  3. 用python做时间序列预测九:ARIMA模型简介

    本篇介绍时间序列预测常用的ARIMA模型,通过了解本篇内容,将可以使用ARIMA预测一个时间序列. 什么是ARIMA? ARIMA是'Auto Regressive Integrated Moving ...

  4. Python中利用LSTM模型进行时间序列预测分析

    时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺 ...

  5. 基于 Keras 用 LSTM 网络做时间序列预测

    目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记 ...

  6. facebook开源的prophet时间序列预测工具---识别多种周期性、趋势性(线性,logistic)、节假日效应,以及部分异常值

    简单使用 代码如下 这是官网的quickstart的内容,csv文件也可以下到,这个入门以后后面调试加入其它参数就很简单了. import pandas as pd import numpy as n ...

  7. 腾讯技术工程 | 基于Prophet的时间序列预测

    预测未来永远是一件让人兴奋而又神奇的事.为此,人们研究了许多时间序列预测模型.然而,大部分的时间序列模型都因为预测的问题过于复杂而效果不理想.这是因为时间序列预测不光需要大量的统计知识,更重要的是它需 ...

  8. Kesci: Keras 实现 LSTM——时间序列预测

    博主之前参与的一个科研项目是用 LSTM 结合 Attention 机制依据作物生长期内气象环境因素预测作物产量.本篇博客将介绍如何用 keras 深度学习的框架搭建 LSTM 模型对时间序列做预测. ...

  9. (数据科学学习手札40)tensorflow实现LSTM时间序列预测

    一.简介 上一篇中我们较为详细地铺垫了关于RNN及其变种LSTM的一些基本知识,也提到了LSTM在时间序列预测上优越的性能,本篇就将对如何利用tensorflow,在实际时间序列预测任务中搭建模型来完 ...

  10. 上篇 | 使用 🤗 Transformers 进行概率时间序列预测

    介绍 时间序列预测是一个重要的科学和商业问题,因此最近通过使用基于深度学习 而不是经典方法的模型也涌现出诸多创新.ARIMA 等经典方法与新颖的深度学习方法之间的一个重要区别如下. 概率预测 通常,经 ...

随机推荐

  1. uniapp云数据库笔记

    1.基本概念 云数据库:一个云空间只能有一个数据库,一个数据库可以有多个集合(表),每个表可以有多行数据(文档) DB Schema:是基于 JSON 格式定义的数据结构的规范,每个表有多少字段都需要 ...

  2. Win10虚拟机安装Docker解决Docker Engine Stopped问题记录

    跟着网上的帖子开启WSL2安装DockerDesktop, 但是无法启动Docker,一直[Docker Engine stopped] 继续跟着网上的帖子解决问题,检查电脑各种配置都搞一通后还是无法 ...

  3. nrm安装后无法使用

    前情 在使用node.js的过程中,经常会时不是遇到有些包下载安装慢或者失败,有时可以尝试切换源来解决这类问题 坑 通过npm install nrm -g安装完nrm后运行nrm一直报错 Why? ...

  4. AFL分析与实战

    文章一开始发表在微信公众号 https://mp.weixin.qq.com/s?__biz=MzUyNzc4Mzk3MQ==&mid=2247486292&idx=1&sn= ...

  5. 06C++顺序结构与程序IPO模式

    一.程序IPO模式 编程 IPO 是指输入.处理和输出(Input, Process, Output)的概念.在计算机编程中,IPO 是一种常用的设计模式,用于描述程序的基本流程.具体来说,IPO 指 ...

  6. 高中生入门学习c/c++指导

    一.c与c++关系 参考图示: 可见,c与c++的基本部分是相同的,会有一些小区别,不妨一起学.DEV-C++能支持C++和C语言编程 二.学习资料网站介绍 1.C语言初阶--手把手教零基础/新手入门 ...

  7. 【COS 加码福利】COS 用户实践有奖征文,等你来投稿!

    COS用户实践征文活动火热进行中,本次征集主题为:如何在生态场景下使用 COS? 优质文章将有机会被编入腾讯云官方文档库,供广大用户学习参考.更有多重好礼等你来拿,速来围观投稿吧! 投稿说明: 1.投 ...

  8. R数据分析:生存数据的预测模型建立方法与评价

    之前写了生存分析列线图的做法,列线图作为一个预测模型可视化工具,我们使用它的过程其实就是一个给新数据做预测的过程,其内在本身的模型就是我们基于现有数据训练的一个预测模型,今天也算是接着上一篇文章继续写 ...

  9. ASP.NET Core: ConfigurationBuilder

    在 ASP.NET Core 中,大量使用了建造模式 Builer,从类型的名称就可以看出来这一点,例如 HostBuilder.ConfigurationBuilder 等等. 建造模式是对象的创建 ...

  10. java - 正则表达式替换Spring @RequestMapping URL中的@PathVariable值

    我在接口(只是为了保存常量)中有Spring MVC URL的定义,例如: String URL_X = "/my-url/{id:[0-9]*}"; String URL_Y = ...