The "travelling salesman problem" asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science. (Quoted from "https://en.wikipedia.org/wiki/Travelling_salesman_problem".)

In this problem, you are supposed to find, from a given list of cycles, the one that is the closest to the solution of a travelling salesman problem.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2), the number of cities, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format City1 City2 Dist, where the cities are numbered from 1 to N and the distance Dist is positive and is no more than 100. The next line gives a positive integer K which is the number of paths, followed by K lines of paths, each in the format:

n C​1​​ C​2​​ ... C​n​​

where n is the number of cities in the list, and C​i​​'s are the cities on a path.

Output Specification:

For each path, print in a line Path X: TotalDist (Description) where X is the index (starting from 1) of that path, TotalDist its total distance (if this distance does not exist, output NA instead), and Description is one of the following:

  • TS simple cycle if it is a simple cycle that visits every city;
  • TS cycle if it is a cycle that visits every city, but not a simple cycle;
  • Not a TS cycle if it is NOT a cycle that visits every city.

Finally print in a line Shortest Dist(X) = TotalDist where X is the index of the cycle that is the closest to the solution of a travelling salesman problem, and TotalDist is its total distance. It is guaranteed that such a solution is unique.

Sample Input:

6 10
6 2 1
3 4 1
1 5 1
2 5 1
3 1 8
4 1 6
1 6 1
6 3 1
1 2 1
4 5 1
7
7 5 1 4 3 6 2 5
7 6 1 3 4 5 2 6
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 2 5 4 3 1
7 6 3 2 5 4 1 6

Sample Output:

Path 1: 11 (TS simple cycle)
Path 2: 13 (TS simple cycle)
Path 3: 10 (Not a TS cycle)
Path 4: 8 (TS cycle)
Path 5: 3 (Not a TS cycle)
Path 6: 13 (Not a TS cycle)
Path 7: NA (Not a TS cycle)
Shortest Dist(4) = 8
Solution:
  这道题是水题,就是一个简单的计算路程和判断的过程,不用大脑
 #include <iostream>
#include <vector>
using namespace std;
int n, m, k, x;
int dis[][] = { };
int main()
{
cin >> n >> m;
for (int i = ; i < m; ++i)
{
int a, b, c;
cin >> a >> b >> c;
dis[a][b] = dis[b][a] = c;
}
cin >> k;
int minDis = INT32_MAX, minIdex = ;
for (int t = ; t <= k; ++t)
{
int calDis = ;
bool isCycle = true;
vector<bool>visit(n + , true);
cin >> x;
vector<int>path(x);
for (int i = ; i < x; ++i)
{
cin >> path[i];
visit[path[i]] = false;
}
for (int i = ; i < x; ++i)
{
if (dis[path[i - ]][path[i]] > )
calDis += dis[path[i - ]][path[i]];
else//此路不通
{
isCycle = false;
calDis = -;//没有结果。输出为NA
break;
}
}
if (path[] != path[x - ])isCycle = false;//不是回路
for (int i = ; i <= n && isCycle; ++i)
if (visit[i] == true)
isCycle = false;
if(calDis<)
printf("Path %d: NA (Not a TS cycle)\n", t);
else if (!isCycle)
printf("Path %d: %d (Not a TS cycle)\n", t, calDis);
else if(x==n+)
printf("Path %d: %d (TS simple cycle)\n", t, calDis);
else
printf("Path %d: %d (TS cycle)\n", t, calDis);
if (isCycle && minDis > calDis)
{
minDis = calDis;
minIdex = t;
}
}
printf("Shortest Dist(%d) = %d", minIdex, minDis);
return ;
}
 

PAT甲级——A1150 TravellingSalesmanProblem【25】的更多相关文章

  1. PAT 甲级 1010 Radix (25)(25 分)进制匹配(听说要用二分,历经坎坷,终于AC)

    1010 Radix (25)(25 分) Given a pair of positive integers, for example, 6 and 110, can this equation 6 ...

  2. PAT 甲级1003 Emergency (25)(25 分)(Dikjstra,也可以自己到自己!)

    As an emergency rescue team leader of a city, you are given a special map of your country. The map s ...

  3. pat 甲级 1010. Radix (25)

    1010. Radix (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Given a pair of ...

  4. pat 甲级 1078. Hashing (25)

    1078. Hashing (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue The task of t ...

  5. PAT 甲级 1003. Emergency (25)

    1003. Emergency (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue As an emerg ...

  6. PAT 甲级 1078 Hashing (25 分)(简单,平方二次探测)

    1078 Hashing (25 分)   The task of this problem is simple: insert a sequence of distinct positive int ...

  7. PAT 甲级 1070 Mooncake (25 分)(结构体排序,贪心,简单)

    1070 Mooncake (25 分)   Mooncake is a Chinese bakery product traditionally eaten during the Mid-Autum ...

  8. PAT 甲级 1032 Sharing (25 分)(结构体模拟链表,结构体的赋值是深拷贝)

    1032 Sharing (25 分)   To store English words, one method is to use linked lists and store a word let ...

  9. PAT 甲级 1029 Median (25 分)(思维题,找两个队列的中位数,没想到)*

    1029 Median (25 分)   Given an increasing sequence S of N integers, the median is the number at the m ...

随机推荐

  1. centos 7 安装 redis 及 php-redis 拓展

    ===============redis 安装========================== 直接yum 安装的redis 不是最新版本 yum install redis 如果要安装最新的re ...

  2. ccf 201809-3 元素选择器

    一.思路: 1.将结构化文档的每一行处理成一个节点(可定义一个结构体,成员包含标签tag.属性id.层级level.祖先所在行数father). 2.然后整个结构化文档就成了一个树形结构,可从任一节点 ...

  3. 工控PLC中,关于定时器TON,TOF,的一点新认知,或者说醒悟吧!

    PLC  中的定时器,都是放在一个具体PRG任务单元中的,而PRG单元需要放在具体固定的周期循环任务中才能被执行,而这个周期循环任务的循环周期 T: 与定时器的定时时间T0:    T与T0 的数量级 ...

  4. 实验报告(五)&第七周学习总结

    实验目的 理解抽象类与接口的使用: 了解包的作用,掌握包的设计方法. 实验要求 掌握使用抽象类的方法. 掌握使用系统接口的技术和创建自定义接口的方法. 了解 Java 系统包的结构. 掌握创建自定义包 ...

  5. 如何用Mybatis分库分表

    分库 在分库的时候 有时候为了方便 一些表需要存放所有库的信息,称为全局库.如:用户表存放所有的用户. 此时分库的思路 数据库分为全局库和业务库,其中业务库又分为N多个库,全局库只放个别表方便开发. ...

  6. mySQL部分疑问和小结(orale)

    2015/10/15 1.mysql语句: ALTER table scfz_xewp add BGR varchar(255) after KYR 2.创建触发器时:  --/   CREATE D ...

  7. 获取年月日格式为yyyy-m-d简单写法

    方法:通过日期函数toLocaleString()获取.new Date().toLocaleString( );  //"2019/9/1 上午11:20:23" 获取年月日方法 ...

  8. 转载 Struts2的配置 struts.xml Action详解

    在学习struts的时候,我们一定要掌握struts2的工作原理.只有当我们明确了在struts2框架的内部架构的实现过程,在配置整个struts 的框架时,可以很好的进行逻辑上的配置.接下来我就先简 ...

  9. JavaSE---System类

    1.概述 1.1 System类  代表当前java程序的运行平台: 1.2 System类  提供的类方法: getenv():获取系统所有的环境变量: getenv(String name):获取 ...

  10. springboot配置redis+jedis,支持基础redis,并实现jedis GEO地图功能

    Springboot配置redis+jedis,已在项目中测试并成功运行,支持基础redis操作,并通过jedis做了redis GEO地图的java实现,GEO支持存储地理位置信息来实现诸如附近的人 ...