参考:http://lists.gnu.org/archive/html/qemu-devel/2011-04/pdfhC5rVdz7U8.pdf

1. qemu与Bochs的区别:

1. Bochs

Bochs和qemu都是以软件仿真为主的虚拟软件,二者的区别何在?

Bochs完全是以软件的方式对目标程序(OS以及运行在其上的应用程序)进行仿真。Bochs在自己的内部维护着CPU、内存、IO设备的数据结构,每当Bochs仿真一条指令,就会按照这条指令在真实硬件上运行时应当产生的效果,对这些软件维护硬件数据结构产生相应的影响。

这种逐条处理的方式,可以保持与真实运行时完全相同的粒度,便于学习和调试。但是由于这是一种一对多的映射方式,即一条机制指令,会被解释成N条指令执行,因此效率的下降是在所难免。

2. qemu

qemu采取的是另外一种粒度的仿真。

qemu会从目标程序中,截取当前需要运行的一段代码(被称作Translation Block),将这段代码先翻译成中间语言(Intermediate Code),再将中间语言翻译成主机体系相关的二进制代码。

由于Translation Block的粒度大于单条机制指令的粒度,qemu相当于是batch处理指令的仿真操作的,因此会比逐条处理的Bochs性能上快一些。

除此之外,qemu还会优化对于Translation Block的缓存,以及将多个连接执行的Translation Block链接起来在同一批次进行处理;这两种方式对于反复执行的代码段的仿真性能有很大的提升。

3. 总结

简而言之,Bochs适合用于学习,以及比较简单的任务处理,Bochs自带的调试器也很给力,用Bochs调试Linux内核是不错的选择(可以参考:http://www.cnblogs.com/long123king/p/3559816.html等等),但是Bochs不适合用于真实地仿真大型的操作系统,比如Windows,基本上无法做到。

qemu由于处理方式上有优化,不像Bochs那样可以“原汁原味”地展现指令级别的执行过程,因此不太适合于学习;但是由于qemu性能上的提升,还可以配合内核虚拟化模块kvm,甚至xen,因此qemu可以像主流的虚拟桌面软件(VirtualBox, Vmware等等)一样流畅地运行多种操作系统。如果你需要在Linux上面虚拟化Windows,肯定是qemu更加适合一些。

tb_find_fast: 查找下一个TB(Translation Block),并且生成主机代码;

tcg_qemu_tb_exec:执行生成的主机代码,主机代码由三部分组成:

2. qemu的处理流程

qemu的仿真主循环位于cpu-exec.c:cpu_exec函数中

for(;;)

{

......

tb = tb_find_fast(env);

......

next_tb = cpu_tb_exec(cpu, tc_ptr);

......

}

1. tb_find_fast:

用来准备Translation Block;如果缓存中已经准备好的Translation Block,就直接返回;否则调用tb_find_slow函数来构造一个新的TB。

tb_find_fast

    |

tb_find_slow

    |

tb_gen_code

    |

cpu_gen_code

    |

gen_intermediate_code 【Guest Code --> tcg op(中间代码)】

    |

tcg_gen_code【tcg op(中间代码) --> Host Code】

 

其中,gen_intermediate_code是与体系相关的函数实现,x86的实现位于target-i386/translate.c中,内部调用disas_insn逐条指令处理。

而tcg_gen_code会调用tcg_gen_code_common,从TB中取出中间代码,将其转换成主机代码。

2. cpu_tb_exec:

用来执行生成好的TB。

cpu_tb_exec

    |

tcg_qemu_tb_exec

#define tcg_qemu_tb_exec(tb_ptr) ((long REGPARM (*)(void *))code_gen_prologue)(tb_ptr)

prologue和epilogue是compiler在生成目标代码时,对函数栈帧的保存与恢复的代码,我们信手拈来一个例子

objdump -d vl.o

下面代码中红色的部分就分别是函数的prologue和epilogue。

000000000000013a <bitmap_empty>:

     13a:       55                      push   %rbp

     13b:       48 89 e5                mov    %rsp,%rbp

     13e:       53                      push   %rbx

     13f:       48 83 ec 28             sub    $0x28,%rsp

     143:       48 89 7d d8             mov    %rdi,-0x28(%rbp)

     147:       89 75 d4                mov    %esi,-0x2c(%rbp)

     14a:       64 48 8b 04 25 28 00    mov    %fs:0x28,%rax

     151:       00 00 

     153:       48 89 45 e8             mov    %rax,-0x18(%rbp)

     157:       31 c0                   xor    %eax,%eax

     159:       8b 45 d4                mov    -0x2c(%rbp),%eax

     15c:       83 f8 40                cmp    $0x40,%eax

     15f:       77 42                   ja     1a3 <bitmap_empty+0x69>

     161:       48 8b 45 d8             mov    -0x28(%rbp),%rax

     165:       48 8b 10                mov    (%rax),%rdx

     168:       8b 45 d4                mov    -0x2c(%rbp),%eax

     16b:       48 98                   cltq   

     16d:       83 e0 3f                and    $0x3f,%eax

     170:       48 85 c0                test   %rax,%rax

     173:       74 19                   je     18e <bitmap_empty+0x54>

     175:       8b 45 d4                mov    -0x2c(%rbp),%eax

     178:       83 e0 3f                and    $0x3f,%eax

     17b:       be 01 00 00 00          mov    $0x1,%esi

     180:       89 c1                   mov    %eax,%ecx

     182:       48 d3 e6                shl    %cl,%rsi

     185:       48 89 f0                mov    %rsi,%rax

     188:       48 83 e8 01             sub    $0x1,%rax

     18c:       eb 07                   jmp    195 <bitmap_empty+0x5b>

     18e:       48 c7 c0 ff ff ff ff    mov    $0xffffffffffffffff,%rax

     195:       48 21 d0                and    %rdx,%rax

     198:       48 85 c0                test   %rax,%rax

     19b:       0f 94 c0                sete   %al

     19e:       0f b6 c0                movzbl %al,%eax

     1a1:       eb 11                   jmp    1b4 <bitmap_empty+0x7a>

     1a3:       8b 55 d4                mov    -0x2c(%rbp),%edx

     1a6:       48 8b 45 d8             mov    -0x28(%rbp),%rax

     1aa:       89 d6                   mov    %edx,%esi

     1ac:       48 89 c7                mov    %rax,%rdi

     1af:       e8 00 00 00 00          callq  1b4 <bitmap_empty+0x7a>

     1b4:       48 8b 5d e8             mov    -0x18(%rbp),%rbx

     1b8:       64 48 33 1c 25 28 00    xor    %fs:0x28,%rbx

     1bf:       00 00 

     1c1:       74 05                   je     1c8 <bitmap_empty+0x8e>

     1c3:       e8 00 00 00 00          callq  1c8 <bitmap_empty+0x8e>

     1c8:       48 83 c4 28             add    $0x28,%rsp

     1cc:       5b                      pop    %rbx

     1cd:       5d                      pop    %rbp

     1ce:       c3                      retq  

qemu的执行流程中,本来属于qemu的代码,我们可以称之为static code;而通过TB生成的主机代码,我们可以称之为dynamic code,因此必定要有一个入口点,让static code将dynamic code调用起来。qemu采用的是类似函数prologue的方式,这也是为什么我们会看到code_gen_prologue的原因。

code_gen_prologure指向的是TB中动态生成的相对于整个TB的prologue。

 

qemu源码分析的更多相关文章

  1. [dpdk] 熟悉SDK与初步使用 (三)(IP Fragmentation源码分析)

    对例子IP Fragmentation的熟悉,使用,以及源码分析. 功能: 该例子的功能有二: 一: 将IP分片? 二: 根据路由表,做包转发. 路由表如下: IP_FRAG: Socket : ad ...

  2. 鸿蒙轻内核源码分析:文件系统FatFS

    摘要:本文为大家介绍FatFS文件系统结构体的结构体和全局变量,并分析FatFS文件操作接口. 本文分享自华为云社区<鸿蒙轻内核M核源码分析系列二一 03 文件系统FatFS>,作者:zh ...

  3. ABP源码分析一:整体项目结构及目录

    ABP是一套非常优秀的web应用程序架构,适合用来搭建集中式架构的web应用程序. 整个Abp的Infrastructure是以Abp这个package为核心模块(core)+15个模块(module ...

  4. HashMap与TreeMap源码分析

    1. 引言     在红黑树--算法导论(15)中学习了红黑树的原理.本来打算自己来试着实现一下,然而在看了JDK(1.8.0)TreeMap的源码后恍然发现原来它就是利用红黑树实现的(很惭愧学了Ja ...

  5. nginx源码分析之网络初始化

    nginx作为一个高性能的HTTP服务器,网络的处理是其核心,了解网络的初始化有助于加深对nginx网络处理的了解,本文主要通过nginx的源代码来分析其网络初始化. 从配置文件中读取初始化信息 与网 ...

  6. zookeeper源码分析之五服务端(集群leader)处理请求流程

    leader的实现类为LeaderZooKeeperServer,它间接继承自标准ZookeeperServer.它规定了请求到达leader时需要经历的路径: PrepRequestProcesso ...

  7. zookeeper源码分析之四服务端(单机)处理请求流程

    上文: zookeeper源码分析之一服务端启动过程 中,我们介绍了zookeeper服务器的启动过程,其中单机是ZookeeperServer启动,集群使用QuorumPeer启动,那么这次我们分析 ...

  8. zookeeper源码分析之三客户端发送请求流程

    znode 可以被监控,包括这个目录节点中存储的数据的修改,子节点目录的变化等,一旦变化可以通知设置监控的客户端,这个功能是zookeeper对于应用最重要的特性,通过这个特性可以实现的功能包括配置的 ...

  9. java使用websocket,并且获取HttpSession,源码分析

    转载请在页首注明作者与出处 http://www.cnblogs.com/zhuxiaojie/p/6238826.html 一:本文使用范围 此文不仅仅局限于spring boot,普通的sprin ...

随机推荐

  1. Centos7安装部署SonarQube7.9.1教程

    0.参考文档 LTS 7.9.1 新特性:https://www.sonarqube.org/sonarqube-7-9-lts/ JDK11 下载地址: 链接:https://pan.baidu.c ...

  2. 对于Final关键字的总结

    1.final关键字可以用于成员变量.本地变量.方法以及类. 2. final成员变量必须在声明的时候初始化或者在构造器中初始化,否则就会报编译错误. 3. 你不能够对final变量再次赋值. 4.  ...

  3. CPython,PyPy?Python和这两个东西有什么关系

    https://blog.csdn.net/fu6543210/article/details/90770794 python是一种编程语言.但这种语言有多种实现,而且与其他语言不同,python并没 ...

  4. java 并发——ReentrantLock

    java 并发--ReentrantLock 简介 public class ReentrantLock implements Lock, java.io.Serializable { // 继承了 ...

  5. UVA10118_Free Candies状态压缩

    这题大概题意是,有四列糖果,一个人手中最多拿五个水果,每次拿水果只能从每一列最上面开始拿. 而如果手中的糖果相同就会成对抵消,奖励给玩家 问玩家怎样取能取到最多的糖果,并输出对数 这题是运用动态规划, ...

  6. MYSQL索引的深入学习

    通常大型网站单日就可能会产生几十万甚至几百万的数据,对于没有索引的表,单表查询可能几十万数据就是瓶颈. 一个简单的对比测试 以我去年测试的数据作为一个简单示例,20多条数据源随机生成200万条数据,平 ...

  7. 转 jmeter 等待时间 pacing think time

    第一部分:Request之间的等待时间的设置 先明确一些概念:1)定时器是在每个sampler(采样器)之前执行的,而不是之后:是的,你没有看错,不管这个定时器的位置放在sampler之后,还是之下, ...

  8. [轉]Linux Data Structures

    Table of Contents, Show Frames, No Frames Chapter 15 Linux Data Structures This appendix lists the m ...

  9. python 根据余弦定理计算两边的夹角

    前面写过C#的. import numpy def GetAngle(sta_point, mid_point, end_point): ma_x = sta_point.X-mid_point.X ...

  10. sed以及awk

    一.sed sed是一种流编辑器,它一次处理一行内容.处理时,把当前处理的行存储在临时 缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的 内容,处理完成后,把缓 ...