Solution:

​ 这题可以分为两个部分,

​ 一个部分为处理出每个点最大的金条数与最小的金条数,记为 \([Min_i, Max_i]\)

​ 第二部分为对于 \(n\) 个变量 \(x_i\in[Min_i, Max_i]\cup \mathbb {Z}\),计算选出 \(B\) 个前 \(A\) 大变量的方案数。

​ 对于两个点 u->v ,如果有 u 的人 i (有金条)v 的人 j 满足 \(i\equiv j(\text{mod }\gcd(S_u, S_v))\) ,那么 i 就可以给 j 假金条。

​ 同理,对于一条路径 u->...->vg 为其 \(\gcd\) ,那么只要满足 \(i \equiv j(\text{mod }g)\) ,那么 i 就可以给 j 假金条。

​ 所以对于一个强连通分量中,有金条的人就会满足 \(i\equiv j(\text{mod } g)\) ,j 为每个点有金条的人,g为整个强连通分量的 \(\gcd\) 。

​ 枚举一个点有金条的人,这样就可以 \(O(\text{金条数目})\) 求出每一个强连通分量的金条拥有状态。

​ 由竞赛图的性质,缩点后的竞赛图还是竞赛图,而且会长这个样子:

​ 即每个点都向它后面连边,显然我们为了让金条数量最大化就是按照拓扑序依次算点的贡献,这样算出来每个强连通分量的金条数假设为 Mx 那么每个点u拥有的金条数就是\(\frac{S_uMx}{g}\)。

​ 接下来就考虑怎么计数,为了不算重,枚举 u 为B中最小的点,然后统计出 \(Max_u<Min_i\) 的数量 \(cnt_1\),以及 \(Max_i\geq Max_u\geq Min_i\) 的数量 \(cnt_2\),那么再枚举在 \(cnt_2\)个中选j个,给答案加上 \({~cnt_2~\choose j}{~cnt_1~\choose B - 1 - j}\)。

#include <iostream>
#include <cstdio>
#include <set>
#include <algorithm>
#include <vector>
#define LL long long
using namespace std;
const int maxn = 5003;
const int MOD = 1e9 + 7;
vector<int> g[maxn];
vector<bool> city[maxn];
int A, B, n;
int s[maxn], fac[maxn], ifac[maxn];
void input() {
char str[(int)(2e6) + 2];
scanf("%d %d %d", &n, &A, &B);
for (int i = 1; i <= n; ++i) {
scanf("%s", str + 1);
for (int j = 1; j <= n; ++j)
if (str[j] == '1')
g[i].push_back(j);
}
for (int i = 1; i <= n; ++i) {
scanf("%d %s", &s[i], str);
city[i].resize(s[i]);
for (int j = 0; j < s[i]; ++j)
city[i][j] = str[j] - '0';
}
}
LL qpow(LL a, LL b) {
LL res(1);
while (b) {
if (b & 1) {
res = res * a % MOD;
}
a = a * a % MOD;
b >>= 1;
}
return res;
}
void init() {
fac[0] = 1;
int N = maxn - 3;
for (int i = 1; i <= N; ++i)
fac[i] = 1ll * fac[i - 1] * i % MOD;
ifac[N] = qpow(fac[N], MOD - 2);
for (int i = N - 1; i >= 0; --i)
ifac[i] = 1ll * ifac[i + 1] * (i + 1) % MOD;
}
vector<bool> colbull[maxn];
int Gcdcol[maxn], cntbull[maxn], maxbull[maxn], minbull[maxn];
int low[maxn], dfn[maxn], dfst, col[maxn], colcnt, stk[maxn], top;
void tarjan(int u) {
dfn[u] = low[u] = ++dfst;
stk[++top] = u;
for (int i = 0; i < (int)g[u].size(); ++i) {
int v= g[u][i];
if (!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
} else if (!col[v]) {
low[u] = min(low[u], dfn[v]);
}
}
if (low[u] == dfn[u]) {
++colcnt;
int v;
do {
v = stk[top--];
col[v] = colcnt;
} while (u != v);
Gcdcol[colcnt] = s[u];
}
}
void solve1() {
for (int i = 1; i <= n; ++i)
if (!dfn[i])
tarjan(i);
for (int i = 1; i <= n; ++i)
Gcdcol[col[i]] = __gcd(Gcdcol[col[i]], s[i]);
for (int i = 1; i <= n; ++i) {
colbull[col[i]].resize(Gcdcol[col[i]]);
for (int j = 0; j < s[i]; ++j)
if (city[i][j] == 1) {
colbull[col[i]][j % Gcdcol[col[i]]] = 1;
}
}
vector<bool> tmp;
for (int i = colcnt; i >= 2; --i) {
int g = __gcd(Gcdcol[i], Gcdcol[i - 1]);
tmp.clear();
tmp.resize(g);
for (int j = 0; j < Gcdcol[i]; ++j)
tmp[j % g] = tmp[j % g] | colbull[i][j];
for (int j = 0; j < Gcdcol[i - 1]; ++j)
colbull[i - 1][j] = colbull[i - 1][j] | tmp[j % g];
}
for (int i = 1; i <= colcnt; ++i)
for (int j = 0; j < Gcdcol[i]; ++j)
cntbull[i] += colbull[i][j];
for (int i = 1; i <= n; ++i)
maxbull[i] = s[i] / Gcdcol[col[i]] * cntbull[col[i]];
for (int i = 1; i <= n; ++i)
for (int j = 0; j < s[i]; ++j)
minbull[i] += city[i][j];
}
LL ans;
LL combine(int n, int m) {
if (m < 0 || n < 0 || m > n) return 0;
return 1ll * fac[n] * ifac[m] % MOD * ifac[n - m] % MOD;
}
void solve2() {
for (int i = 1; i <= n; ++i) {
int cnt1 = 0, cnt2 = 0;
for (int j = 1; j <= n; ++j) {
if (i == j) continue;
if (minbull[j] > maxbull[i]) ++cnt1;
else if (maxbull[j] > maxbull[i] || (maxbull[j] == maxbull[i] and j < i)) ++cnt2;
}
if (cnt1 >= A) continue;
for (int j = min(B - 1, min(cnt2, A - 1 - cnt1)); j >= B - cnt1 - 1 && j >= 0; j--) {
ans = (1ll * ans + 1ll * combine(cnt1, B - j - 1) * combine(cnt2, j) % MOD) % MOD;
}
}
cout << ans << endl;
}
int main() {
// freopen("fake.in", "r", stdin);
// freopen("fake.out", "w", stdout);
input();
init();
solve1();
solve2();
return 0;
}

[CF804F]Fake bullions的更多相关文章

  1. [codeforces 804F. Fake bullions]

    题目大意: 传送门. 给一个n个点的有向完全图(即任意两点有且仅有一条有向边). 每一个点上有$S_i$个人,开始时其中有些人有真金块,有些人没有金块.当时刻$i$时,若$u$到$v$有边,若$u$中 ...

  2. 【Codeforces】【图论】【数量】【哈密顿路径】Fake bullions (CodeForces - 804F)

    题意 有n个黑帮(gang),每个黑帮有siz[i]个人,黑帮与黑帮之间有有向边,并形成了一个竞赛完全图(即去除方向后正好为一个无向完全图).在很多年前,有一些人参与了一次大型抢劫,参与抢劫的人都获得 ...

  3. Solution -「CF 804F」Fake bullions

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个点的竞赛图,第 \(i\) 个点代表了 \(s_i\) 个人,每个人(0-based)可能有真金条.此后在 ...

  4. Fake chat script for website download

    Are you searching for free fake webchat script then you are at the right place go get download your ...

  5. fake gucci outlet perform a couple associated with things in great trust

    Based on my a lot of years of encounter within Taobao, purchase bags must go to the high reputation ...

  6. Zyxel Switch-How to block a fake DHCP server without enabling DHCP snooping?

    How to block a fake DHCP server without enabling DHCP snooping? Scenario How to block a fake DHCP se ...

  7. Codeforces Round #310 (Div. 2) B. Case of Fake Numbers 水题

    B. Case of Fake Numbers Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

  8. 在使用Fake framework的时候,为什么有一些函数没有生产mock呢?

    在使用Visual studio 2012 的Fake framework 做单元测试的时候,你会发现有一些函数没有生产Stub 或者 Shim的版本,这可能是由于Fake的一些限制导致的,但如何知道 ...

  9. fake it till you become it

    fake it till you become it_你泛起山川烟波里的不是我._百度空间 fake it till you become it

随机推荐

  1. vue.js(11)--案例--关键字搜索列表

    关键字搜索品牌案例 (1)页面布局 <div class="app"> <div class="panel panel-primary"> ...

  2. Linux性能优化从入门到实战:01 Linux性能优化学习路线

      我通过阅读各种相关书籍,从操作系统原理.到 Linux内核,再到硬件驱动程序等等.   把观察到的性能问题跟系统原理关联起来,特别是把系统从应用程序.库函数.系统调用.再到内核和硬件等不同的层级贯 ...

  3. paste 合并文件

    1.命令功能 paste  用于合并文件的列,把每个文件以列对列的方式,一列列地加以合并. 2.语法格式 paste  option  file 参数选项 参数 参数说明 -d 指定间隔符合并文件(默 ...

  4. 转发一个robotframework的循环

    Click_Element Xpath=//b[text()='系统投放管理'] Sleep 1 Click_Element Xpath=//span[text()='全部投放情况查询'] Sleep ...

  5. Promise.all 的原理

    // all的原理 Promise.all = function(values){ return new Promise((resolve,reject)=>{ let results = [] ...

  6. springboot cache---本地缓存的使用

    使用缓存的几个注解 什么时候需要使用缓存呢?一般是在一个方法的返回值需要被频繁用到.但是返回值很少改变而且执行这个方法会消耗较多的时间,这种情况我们可以考虑将返回值暂时存到内存中,需要时通过对应的唯一 ...

  7. sonar-runner命令模式运行sonar

    适用环境:该种配置的模式适用于本地调试模式 前提条件:在工程路径下创建sonar-project.properties文件 该客户端的路径在系统配置文件中进行了定义 alias sonar-runne ...

  8. 2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 D Merchandise (斜率优化)

    Description: The elderly aunts always like to look for bargains and preferential merchandise. Now th ...

  9. vue中操作Dom节点的方法

    1.vue中ref操作dom节点 <template> <div id="app"> <div </div> <button @cl ...

  10. Sending form data

    https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Sending_and_retrieving_form_data This arti ...