<题目链接>

题目大意:

有n座城市,城市之间建立了m条有向的地下通道。你需要发起若干轮轰炸,每轮可以轰炸任意多个城市。但每次轰炸的城市中,不能存在两个不同的城市i,j满足可以通过地道从城市i到达城市j。你需要求出最少需要多少轮可以对每座城市都进行至少一次轰炸。
解题分析:
因为每轮轰炸都不能同时炸能够从一点到达另一点的两地,就是说强连通缩点之后在同一条路径上的所有点都不能在同一轮被炸。显然就是让我们求DAG最长路上点的数量,因为这个最长路上的点都只能在不同的轮次被炸,而其它每一条完整路径上的总点数一定小于等于这条最长路径的总点数,所以他们一定能够安排在不同的轮次爆炸。
#include <bits/stdc++.h>
using namespace std; template<typename T>
inline void read(T&x){
x=;int f=;char c=getchar();
while(c<'' || c>''){ if(c=='-')f=-;c=getchar(); }
while(c>='' && c<=''){ x=x*+c-'';c=getchar(); }
x*=f;
}
#define REP(i,s,t) for(int i=s;i<=t;i++)
#define clr(a,b) memset(a,b,sizeof(a))
const int N = 1e6+;
int n,m,cnt1,cnt2,tot,top,scc;
int head1[N],head2[N],dfn[N],low[N],bel[N],num[N],dp[N],instk[N],stk[N]; struct Edge{ int from,to,nxt; }e1[N],e2[N]; inline void add1(int u,int v){
e1[++cnt1]=(Edge){ u,v,head1[u] };head1[u]=cnt1;
}
inline void add2(int u,int v){
e2[++cnt2]=(Edge){ u,v,head2[u] };head2[u]=cnt2;
}
void Tarjan(int u){
dfn[u]=low[u]=++tot;
instk[u]=;stk[++top]=u;
for(int i=head1[u];i;i=e1[i].nxt){
int v=e1[i].to;
if(!dfn[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}else if(instk[v])low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u]){
++scc;
while(true){
int v=stk[top--];
instk[v]=;
bel[v]=scc;
num[scc]++; //统计每个强连通分量中的点数
if(v==u)break;
}
}
}
inline void gao(){ //缩点之后正向建图
// for(auto e:e1){
for(int i=;i<=cnt1;i++){
Edge e=e1[i];
int u=e.from,v=e.to;
if(bel[u]!=bel[v])add2(bel[u],bel[v]);
}
}
int DFS(int u){ //记忆化搜索求解DAG最长路
if(dp[u])return dp[u];
int ans=num[u];
for(int i=head2[u];i;i=e2[i].nxt){
int v=e2[i].to;
ans=max(ans,DFS(v)+num[u]);
}
return dp[u]=ans;
}
int main(){
read(n);read(m);
REP(i,,m){
int u,v;read(u);read(v);
add1(u,v);
}
REP(i,,n) if(!dfn[i]) Tarjan(i);
gao();
int ans=-;
for(int i=;i<=scc;i++){
ans=max(ans,DFS(i));
}
printf("%d\n",ans);
}

BZOJ 5450 轰炸 (强连通缩点+DAG最长路)的更多相关文章

  1. UVA11324 The Largest Clique (强连通缩点+DP最长路)

    <题目链接> 题目大意: 给你一张有向图 G,求一个结点数最大的结点集,使得该结点集中的任意两个结点 u 和 v 满足:要么 u 可以达 v,要么 v 可以达 u(u,v相互可达也行). ...

  2. ZOJ 3795 Grouping (强连通缩点+DP最长路)

    <题目链接> 题目大意: n个人,m条关系,每条关系a >= b,说明a,b之间是可比较的,如果还有b >= c,则说明b,c之间,a,c之间都是可以比较的.问至少需要多少个集 ...

  3. BZOJ1093 [ZJOI2007]最大半连通子图 【tarjan缩点 + DAG最长路计数】

    题目 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G ...

  4. 「BZOJ1924」「SDOI2010」 所驼门王的宝藏 tarjan + dp(DAG 最长路)

    「BZOJ1924」[SDOI2010] 所驼门王的宝藏 tarjan + dp(DAG 最长路) -------------------------------------------------- ...

  5. 【bzoj1179】[Apio2009]Atm Tarjan缩点+Spfa最长路

    题目描述 输入 第一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号.接下来N行,每 ...

  6. NYOJ16 矩形嵌套(DAG最长路)

    矩形嵌套 紫书P262 这是有向无环图DAG(Directed Acyclic Graph)上的动态规划,是DAG最长路问题 [题目链接]NYOJ16-矩形嵌套 [题目类型]DAG上的dp & ...

  7. uva 10051 Tower of Cubes(DAG最长路)

    题目连接:10051 - Tower of Cubes 题目大意:有n个正方体,从序号1~n, 对应的每个立方体的6个面分别有它的颜色(用数字给出),现在想要将立方体堆成塔,并且上面的立方体的序号要小 ...

  8. Tarjan缩点+Spfa最长路【p3627】[APIO2009] 抢掠计划

    Description Siruseri 城中的道路都是单向的.不同的道路由路口连接.按照法律的规定, 在每个路口都设立了一个 Siruseri 银行的 ATM 取款机.令人奇怪的是,Siruseri ...

  9. 简单Dp----最长公共子序列,DAG最长路,简单区间DP等

    /* uva 111 * 题意: * 顺序有变化的最长公共子序列: * 模板: */ #include<iostream> #include<cstdio> #include& ...

随机推荐

  1. ssh免口令密码登录及兼容性处理

    1). client ---> server 客户端发起对服务器的连接,登录服务器. 2). 须在客户端生成密钥对 注意: 公钥加密私钥解:私钥加密公钥解. 可以发布公钥,但私钥是不能出本机的. ...

  2. 【转】 linux硬链接与软链接

    转自:http://www.cnblogs.com/yfanqiu/archive/2012/06/11/2545556.html Linux 系统中有软链接和硬链接两种特殊的“文件”. 软链接可以看 ...

  3. ForkJoinPool源码简单解析

    ForkJoin框架之ForkJoinTask  java  阅读约 62 分钟 前言 在前面的文章"CompletableFuture和响应式编程"中提到了ForkJoinTas ...

  4. Vue.js 技术揭秘学习 (2) Vue 实例挂载的实现

    Vue 中我们是通过 $mount 实例方法去挂载 vm 的 $mount 方法实际上会去调用 mountComponent 方法,mountComponent 核心就是先实例化一个渲染Watcher ...

  5. thinkphp 模板变量输出替换和赋值

    一.变量输出的几个方法 <?php namespace app\index\controller; use http\Params; use think\Config; use think\Co ...

  6. map接口、hashmap常用方法

    注意:map中键不能重复(是否重复是根据equals方法判断),否则新的会覆盖为旧的 范例: public class TestMap { public static void main(String ...

  7. pandas.DataFrame.drop_duplicates 用法说明

    DataFrame.drop_duplicates(subset=None, keep='first', inplace=False) subset考虑重复发生在哪一列,默认考虑所有列,就是在任何一列 ...

  8. HAProxy+Heartbeat双节点出现VIP情况

    本文使用heartbeat做高可用,主节点192.168.0.204,备节点192.168.0.205,vip192.168.0.206,防火墙启动状态 先启动主节点,再启动备节点后,发现以下问题: ...

  9. Java中的栈和队列

    栈: public class Stack<E> extends Vector<E> { // 使用数组实现栈 // 构造一个空栈 public Stack() { } // ...

  10. 阿里云祝顺民(江鹤):云原生SDWAN加速企业上云 引领未来智能网络

    第二届中国SD-WAN峰会于11月16日在北京盛大开幕,阿里云以黄金赞助商之名隆重参与.作为全球前三,亚太第一的云计算厂商,阿里云一直引领云网技术的演进及应用落地.过去一年,阿里云发布以云为中心的云原 ...