1dataframe删除某一列的重复元素,默认只留下第一次出现的

inplace参数设置为true时直接在原数据上修改,为False时,生成副本.

注意所有函数中inplace一旦设置为True,此时后面不能再跟任何函数,因为它整体已经是None.想要再跟函数只能再写一行.

且此时在前面也不能赋值,赋值也是None.因为设置为True时,整体是None,设置为False时,整体是一个引用,可以赋给其它变量.

a1 = pd.DataFrame({
'a': [1, 1, 3, 2,],
'b': [1, 1, 6, 4,],
'c': [1, 1, 3, 9,]
})
print(a1)
a1.drop_duplicates(inplace=True)
print(a1)
# 这里inplace为假,整体实际上是一个引用,所以可以直接输出.
print(a1.drop_duplicates(['a','b'], keep='first',inplace=False))
# 注意这里因为inplace为真,直接在原数据上修改,直接输出是空,因为它并不是一个引用,a1才是引用.
print(a1.drop_duplicates(['a','b'], keep='first',inplace=True))
# a b c
# 0 1 1 1
# 1 1 1 1
# 2 3 6 3
# 3 2 4 9
# a b c
# 0 1 1 1
# 2 3 6 3
# 3 2 4 9
# a b c
# 0 1 1 1
# 2 3 6 3
# 3 2 4 9
# None

https://blog.csdn.net/qq_28811329/article/details/79962511

 test_sample_quchong = test_sample.drop_duplicates(['ggid'])利用 data.drop_duplicates()#data中一行元素全部相同时才去除可检查dataframe是否有重复的行
 参考:   https://www.cnblogs.com/mahailuo/p/8317178.html
2 想要留下去掉的重复行,可以先删除重复行后,保存索引,再删除索引.
import pandas as pd
import numpy as np
import re df = pd.DataFrame({'a': [1,1,3,4,3],
'b': [1,1,3,4,3],
'c': [1,1,3,4,3]})
print('原始数据:\n',df)
print('去掉重复行后:\n', df.drop_duplicates())
drop_index = df.drop_duplicates().index.tolist()
print('去掉的重复行是:\n',df.drop(drop_index))
# 原始数据:
# a b c
# 0 1 1 1
# 1 1 1 1
# 2 3 3 3
# 3 4 4 4
# 4 3 3 3
# 去掉重复行后:
# a b c
# 0 1 1 1
# 2 3 3 3
# 3 4 4 4
# 去掉的重复行是:
# a b c
# 1 1 1 1
# 4 3 3 3

drop_duplicates()函数的更多相关文章

  1. Lesson11——Pandas去重函数:drop_duplicates()

    pandas目录 "去重"通过字面意思不难理解,就是删除重复的数据.在一个数据集中,找出重复的数据删并将其删除,最终只保存一个唯一存在的数据项,这就是数据去重的整个过程.删除重复数 ...

  2. python中数据分析常用函数整理

    一. apply函数 作用:对 DataFrame 的某行/列应用函数之后,Apply 返回一些值.函数既可以使用默认的,也可以自定义.注意:在第二个输出中应用 head() 函数,因为它包含了很多行 ...

  3. pandas drop_duplicates

    函数 : DataFrame.drop_duplicates(subset=None, keep='first', inplace=False) 参数:这个drop_duplicate方法是对Data ...

  4. 从Excel到Python:最常用的36个Pandas函数

    本文涉及pandas最常用的36个函数,通过这些函数介绍如何完成数据生成和导入.数据清洗.预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作. 生成数据表 常见的生成数据表的方法有两 ...

  5. 关于Excel,你一定用的到的36个Python函数

    从Excel到Python:最常用的36个Pandas函数关于Excel,你一定用的到的36个Python函数 本文涉及pandas最常用的36个函数,通过这些函数介绍如何完成数据生成和导入.数据清洗 ...

  6. pandas包 —— drop()、sort_values()、drop_duplicates()

    一.drop() 函数 当你要删除某一行或者某一列时,用drop函数,它不改变原有的df中的数据,而是返回另一个dataframe来存放删除后的数据. 1.命令: df.drop() 删除行:df.d ...

  7. pandas函数高级

    一.处理丢失数据 有两种丢失数据: None np.nan(NaN) 1. None None是Python自带的,其类型为python object.因此,None不能参与到任何计算中. #查看No ...

  8. 【转载】使用pandas进行数据清洗

    使用pandas进行数据清洗 本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据清洗 目录: 数据表中的重复值 duplicated() drop_duplicated() 数据表中的 ...

  9. 第三节 pandas续集

    import pandas as pd from pandas import Series from pandas import DataFrame import numpy as np 一 创建多层 ...

随机推荐

  1. 剑指offer-二维数组中的查找-数组-python

    题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...

  2. 深度学习之group convolution,计算量及参数量

    目录: 1.什么是group convolution? 和普通的卷积有什么区别? 2.分析计算量.flops 3.分析参数量 4.相比于传统普通卷积有什么优势以及缺点,有什么改进方法? 5.refer ...

  3. git flow 基础了解

    git flow 软件开发中的一个分支管理流程.利用它可以让软件开发有条不紊的进行,先对它进行一个大概的了解吧,后面工作了实际用到了在深入研究一下. 先看下它的工作流程: 这张图看着一脸茫然,先放在这 ...

  4. 关于cron4j的使用

    cron4j的主要实体是调度程序.使用it.sauronsoftware.cron4j.scheduler实例,您可以在一年中的固定时间执行任务.调度程序可以每分钟执行一次任务,每五分钟执行一次,星期 ...

  5. 小程序makePhoneCall拨打电话问题

    调用wx.makePhoneCall后肯定会弹出一个询问框,此时无论是点击确认或者取消,页面都会依次触发app.js中的onHide函数和onShow函数,所以需要注意

  6. 1.基础: 万丈高楼平地起——Redis基础数据结构 学习记录

    <Redis深度历险:核心原理和应用实践>1.基础: 万丈高楼平地起——Redis基础数据结构 学习记录http://naotu.baidu.com/file/b874e2624d3f37 ...

  7. python连接数据库自动发邮件

    python连接数据库实现自动发邮件 1.运行环境 redhat6 + python3.6 + crontab + Oracle客户端 2.用到的模块  3.操作步骤 (1)安装python3.6参考 ...

  8. 小程序-登录-token

    1.前端调用wx.login()获取code值 2.前端通过调用wx.getUserInfo获取iv.rawData.signature.encryptedData等加密数据,传递给后端 3.服务器通 ...

  9. CSS盒子模型中的Padding属性

    CSS padding 属性 CSS padding 属性定义元素边框与元素内容之间的空白区域,不可见.如果想调整盒子的大小可以调整内容区,内边距,边框. CSS padding 属性定义元素的内边距 ...

  10. php list()函数 语法

    php list()函数 语法 作用:用于在一次操作中给一组变量赋值.博智达 语法:list(var1,var2...) 参数: 参数 描述 var1 必需.第一个需要赋值的变量. var2,... ...