内存问题是软件世界的住房问题

  嵌入式Linux系统中,物理内存资源通常比较紧张,而不同的进程可能不停地分配和释放不同大小的内存,因此需要一套高效的内存管理机制。

  内存管理可以分为三个层次,自底向上分别为:

  1)Linux内核内存管理;

  2)glibc层使用系统调用(brk/sbrk)维护的内存管理算法;即glibc库维护一个内存资源池,在应用层满足其他应用的需求。

     glibc库使用第三方的ptmalloc库实现用户态堆管理器,当应用程序调用glibc库封装的malloc函数申请内存时,首先在用户态内存资源池中找合适的块,但是如果申请的内存大小超过128KB,则直接通过brk系统调用向内核申请物理内存。

  3)应用程序从glibc库动态分配内存后,根据应用程序本身的程序特性进行优化。即应用程序分配超大内存块,自己内部实现内存分配算法。

  需要明确的一点是,malloc函数和free函数不是系统调用,而是glibc库封装的接口,malloc和free都是通过brk系统调用实现。

Linux进程地址空间

  典型的Linux进程地址空间(虚拟地址)布局如下图,栈从上往下增长,堆从下往上增长。

  对于32位Linux系统而言,其地址总线宽度为32位,4字节对齐,可寻址范围为4GB。进程地址空间中高1GB为内核地址空间,低3GB为用户地址空间。

  对于64位Linux系统而言,其地址总线通常为48位,8字节对齐,可寻址范围为256TB。进程地址空间中高128TB为内核地址空间,低128TB为用户地址空间。

  栈一般是函数调用栈,函数调用时,将父函数的局部变量、临时变量、LR和PC寄存器值压栈,并为子函数创建新的栈帧。堆则用于动态内存分配,比如通过malloc()函数分配内存。

maps节点

  Linux内核的procfs文件系统为每一个进程维护一个/proc/<pid>/maps节点,用来实时显示该进程的地址映射表。

#cat /proc/1793/maps
00010000-003bf000 r-xp 00000000 01:00 295 /usr/bin/test      //读+执行权限,代码段
003ce000-003d7000 rw-p 003ae000 01:00 295 /usr/bin/test      //读写权限,数据段
003d7000-003f3000 rw-p 00000000 00:00 0
0060e000-00f5d000 rw-p 00000000 00:00 0 [heap]               //用户态堆
f6157000-f686c000 rw-p 00000000 00:00 0
f6889000-f6ee1000 rw-p 00000000 00:00 0
f6f62000-f706e000 rw-p 00000000 00:00 0
f706e000-f7109000 rw-p 00000000 00:00 0
f711c000-f7122000 r-xp 00000000 01:00 153 /lib/libthread_db-1.0.so
f7122000-f7131000 ---p 00006000 01:00 153 /lib/libthread_db-1.0.so
f7131000-f7132000 r--p 00005000 01:00 153 /lib/libthread_db-1.0.so
f7132000-f7133000 rw-p 00006000 01:00 153 /lib/libthread_db-1.0.so
f7133000-f7344000 rw-p 00000000 00:00 0
f7344000-f746d000 r-xp 00000000 01:00 132 /lib/libc-2.24.so
f746d000-f747d000 ---p 00129000 01:00 132 /lib/libc-2.24.so
f747d000-f747f000 r--p 00129000 01:00 132 /lib/libc-2.24.so
f747f000-f7480000 rw-p 0012b000 01:00 132 /lib/libc-2.24.so
f7480000-f7483000 rw-p 00000000 00:00 0
f7483000-f7527000 r-xp 00000000 01:00 139 /lib/libm-2.24.so
f7527000-f7536000 ---p 000a4000 01:00 139 /lib/libm-2.24.so
f7536000-f7537000 r--p 000a3000 01:00 139 /lib/libm-2.24.so
f7537000-f7538000 rw-p 000a4000 01:00 139 /lib/libm-2.24.so
f7538000-f756b000 r-xp 00000000 01:00 456 /usr/lib/libncurses.so.5.9
f756b000-f757a000 ---p 00033000 01:00 456 /usr/lib/libncurses.so.5.9
f757a000-f757d000 rw-p 00032000 01:00 456 /usr/lib/libncurses.so.5.9
f757d000-f757f000 r-xp 00000000 01:00 136 /lib/libdl-2.24.so
f757f000-f758e000 ---p 00002000 01:00 136 /lib/libdl-2.24.so
f758e000-f758f000 r--p 00001000 01:00 136 /lib/libdl-2.24.so
f758f000-f7590000 rw-p 00002000 01:00 136 /lib/libdl-2.24.so
f7590000-f75b0000 r-xp 00000000 01:00 128 /lib/ld-2.24.so
f75bb000-f75bf000 rw-p 00000000 00:00 0
f75bf000-f75c0000 r--p 0001f000 01:00 128 /lib/ld-2.24.so
f75c0000-f75c1000 rw-p 00020000 01:00 128 /lib/ld-2.24.so
ff8b0000-ff8d1000 rw-p 00000000 00:00 0   [stack]           //栈
ffff0000-ffff1000 r-xp 00000000 00:00 0   [vectors]

  显而易见,堆从下往上增长,栈从上往下增长。

  代码段和数据段都在低地址,分开存放是基于安全考虑,因为黑客可能通过篡改数据段从而植入代码。现在的CPU一般都有一个开关,可以配置为不执行数据段代码。

glibc和ptmalloc

  glibc库使用第三方的ptmalloc库实现用户态堆管理器,ptmalloc(POSIX thread malloc)库增加了多线程支持,为每一个线程分配单独的堆。

  ptmalloc库维护一个全局的结构体变量main_arena(主场地),与main_heap关联。main_arena->top指向最大的空闲块,main_arena->fastbinsY[]维护小块内存的链表集合,main_arena->bins[]维护大块内存的链表集合。

  主进程中的其他线程申请内存时,ptmalloc()库为它创建Non-arena辅场地。

  Main-arena从低地址向高地址增长,Non-arena从高地址向低地址增长。

  主进程使用Main-arena,创建线程时通过new_heap创建新的堆,按需分配,每次分配固定大小,如果线程内存不够,则另外再分配固定大小内存,因此线程的堆是不连续的。

  Main-arena和Non-arena的个数和大小是可以配置的。

  ptmalloc()通过brk()系统调用(brk分配的基本单位是132KB)向内存批发大块内存,通过malloc()零售小块内存。

  应用程序通过malloc()向ptmalloc堆管理器申请小块内存,当单次申请内存大小超过128KB时,ptmalloc会通过brk系统调用向内核申请大块内存。

堆检测工具

  因为堆管理算法非常复杂,如果出现堆内存泄漏问题,靠人工非常难分析情况,需要借助专门的工具。

  Valgrind工具提供的memcheck功能可以非常高效地检测内存泄漏问题。

  Google的Address Sanitizer(asan)工具也非常实用。

Linux高级调试与优化——用户态堆的更多相关文章

  1. Linux高级调试与优化——gdb调试命令

    番外 2019年7月26日至27日,公司邀请<软件调试>和<格蠹汇编——软件调试案例集锦>两本书的作者张银奎老师进行<Linux高级调试与优化>培训,有幸聆听张老师 ...

  2. Linux高级调试与优化——内存管理

    1.物理地址和虚拟地址 Linux采用页表机制管理内存,32位系统中页大小一般为4KB,物理内存被划分为连续的页,每一个页都有一个唯一的页号. 为了程序的的可移植性,进程往往需要运行在flat mem ...

  3. Linux高级调试与优化——信号量机制与应用程序崩溃

    背景介绍 Linux分为内核态和用户态,用户态通过系统调用(syscall)进入内核态执行. 用户空间的glibc库将Linux内核系统调用封装成GNU C Library库文件(兼容ANSI &am ...

  4. 42.Linux应用调试-初步制作系统调用(用户态->内核态)

    1首先来讲讲应用程序如何实现系统调用(用户态->内核态)? 我们以应用程序的write()函数为例: 1)首先用户态的write()函数会进入glibc库,里面会将write()转换为swi(S ...

  5. Linux高级调试与优化——进程管理和调度

    进程管理 进程和文件是Linux操作系统的两个最基本的抽象. 进程是处于执行期的程序,进程不仅仅局限于一段可执行程序代码,通常还包含其他资源,如打开的文件.挂起的信号.内核内部数据.处理器状态.进程地 ...

  6. Linux高级调试与优化——Address Sanitizer

    Address Sanitizer ASAN最早可以追溯到 LLVM 的 sanitizers项目(https://github.com/google/sanitizers),这个项目包含了Addre ...

  7. Linux高级调试与优化——同时抓取coredump和maps文件

    Linux内核源码 Documentation/sysctl/kernel.txt core_pattern: core_pattern: core_pattern is used to specif ...

  8. Linux高级调试与优化——内存泄漏实战分析

    最近在整理Linux调试方面的文档,正好碰到了一个内存泄漏踩栈的问题,借此机会记录一下分析过程. 首先,发现问题之后,赶紧看一下产生coredump文件没有,果不其然,产生了coredump,果断上g ...

  9. Linux高级调试与优化——ptrace

    ptrace (process trace) #include <sys/ptrace.h> long ptrace(enum __ptrace_request request, pid_ ...

随机推荐

  1. 跑满带宽的一款百度网盘下载工具 : PanDownload

    下载地址 : 点击进入 官网上面也有介绍使用.在这里,我再说一下 下载之后,解压,运行,登录, 登录好之后,准备进行设置 重要:下载情况分以下三部分 下载内容 < 300M,选择`打包下载`,只 ...

  2. 微信小程序获得高度

    wx.getSystemInfo({ success: (res) => { wx.createSelectorQuery().select('#scrollbox').boundingClie ...

  3. LRU算法介绍和在JAVA的实现及源码分析

    一.写随笔的原因:最近准备去朋友公司面试,他说让我看一下LRU算法,就此整理一下,方便以后的复习. 二.具体的内容: 1.简介: LRU是Least Recently Used的缩写,即最近最少使用. ...

  4. mysql 命令行登录详解

    mysql -?或者是mysql --help或者是mysql -I显示mysql命令的选项. #最全的mysql登录方式: mysql -hIP -uUSENME -pPWD -PPORT DBNA ...

  5. Delphi RadioGroup 组件

  6. 代码报错--------EOFError: Compressed file ended before the end-of-stream marker was reached

    背景:运行LeNet识别CIFAR-10的图像的代码时,报错: EOFError: Compressed file ended before the end-of-stream marker was ...

  7. Java语言基础(3)

    1 算术运算符:+,-,*(乘法),/(除法),%(求余数) 1)只有相同类型的数据才可以进行算术运算,经常使用到自动类型转换和强制类型转换,把参与运算的数据转换为同一个类型,然后再进行算术运算. 案 ...

  8. Balancing Act POJ - 1655 (树的重心)

    Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the t ...

  9. Turing Tree HDU - 3333 (树状数组,离线求区间元素种类数)

    After inventing Turing Tree, 3xian always felt boring when solving problems about intervals, because ...

  10. Javascript引擎

    注入了 浏览器对象模型BOM, 文档对象模型DOM