HDU 6071 Lazy Running (最短路)
题目链接
http://acm.hdu.edu.cn/showproblem.php?pid=6071
题解
又是一道虐信心的智商题。。。
首先有一个辅助问题,这道题转化了一波之后就会化成这个问题: 给定\(a_1,a_2,...,a_n\)和\(K\),求使得\(\sum^{n}_{i=1}a_ix_i=B\)有正整数解且\(B\ge K\)的最小\(B\)值。在本题中\(n=4, a_i\le 30000, K\le 10^{18}\).
这好像是个最短路经典问题,但是我想了三小时根本没想到做法……
大概是随便找一个\(a_k\)(一般来说找最小值节省常数)然后对于模\(a_k\)剩余系下每个数建一个点,每个数\(t\)向\((t+a_i)\mod a_k (i=1,2,...,n)\)连边,这样从\(1\)到\(j\)的最短路就是模\(a_k\)余\(j\)的最小\(B\). 这样就可以在\(O(na_i\log n)\)的时间内解决上述问题。
下面我们把这个问题\(\{ a_i\} =\{ d_i\},K=x\)的答案记作\(f(x)\).
然后考虑原问题如何转化为上述问题,我和题解的转化方式不同。
下面是我的方法(我觉得没啥问题,但是这题数据确实挺弱,有问题欢迎提出啊):
设\(d_1,d_2,d_3,d_4\)分别是\(1,2,3,4\)连向编号下一个的点的边权,我们可以将从\(2\)点出发回到\(2\)点的路径分为五种:
(1) 从\(2\)到\(1\)再回来,长度\(2d_1\).
(2) 从\(2\)到\(3\)再回来,长度\(2d_2\).
(3) 从\(2\)到\(3\)再到\(4\), 到\(1\)或者不到\(1\), 再回来。
此时\(d_2\)边恰好经过往返各一次,\(d_3\)边往返至少一次(防止出现不经过\(d_3\)直接去\(d_4\)的不合法情况),\(d_4\)边往返次数任意,长度\(2d_2+2d_3+2k_3d_3+2k_4d_4\) (\(k_3,k_4\)为任意非负整数)
(4) 从\(2\)到\(1\)再到\(4\), 到\(3\)或者不到\(3\), 再回来。与上一种情况对称,长度\(2d_1+2d_4+2k_3d_3+2k_4d_4\) (\(k_3,k_4\)为非负整数)
(5) 走一个环,环上的边可以额外往返任意多次。长度\(d_1+d_2+d_3+d_4+k_1d_1+k_2d_2+k_3d_3+k_4d_4\) (\(k_1,k_2,k_3,k_4\)为非负整数)
现在考虑简化以上讨论:(3)和(4)各做一次与做两次(5)等价,(5)做多于一次与做一次等价(因为做多次就相当于给\(k\)增加值),因此可以认为(5)至多做一次。
如果(1)(5), (2)(5)同时做都没有意义,(1)(3), (2)(4)同时做相当于做了(5)也没有意义。
考虑最优策略:
(1) 如果(5)做一次,那么(3)和(4)都没有必要做了,因为(3)和(4)的操作就相当于给(5)中的\(k\)增加值。于是这一部分的答案就是\(f(n-d_1-d_2-d_3-d_4)+d_1+d_2+d_3+d_4\).
(2) 如果(5)不做,那么(3)和(4)中可以做一个,这一部分的答案是\(\min(f(n-2d_1-2d_4)+2d_1+2d_4,f(n-2d_2-2d_3)+2d_2+2d_3)\).
(3) 如果(3)(4)(5)都不做,那么考虑(1)和(2),这一部分应该是等于上述问题\(n=2, a_1=d_1,a_2=d_2,K=n\)时的答案。
时间复杂度\(O(d\log d)\), 详细一点大概是\(ShortestPath(d,4d)+ShortestPath(d,2d)\).
这个样写可能唯一的好处就是常数比较小吧……
下面是题解的做法:
把剩余系的模数设为\(\min(d_1,d_2)\), 然后设\(f[i][j]\)表示在\(i\)这个点余数是\(j\)的答案,然后类似最短路转移DP的方法来求。
时间复杂度\(O(d\log d)\), 详细一点大概是\(ShortestPath(4d,8d)\).
代码
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
#define llong long long
using namespace std;
void read(int &x)
{
int f=1;x=0;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}
x*=f;
}
const int N = 6e4;
const int M = 1.2e5;
const llong INF = 1000000000000200000ll;
struct Edge
{
int v,nxt; llong w;
} e[(M<<1)+3];
int fe[N+3];
struct DijNode
{
int u; llong x;
DijNode() {}
DijNode(int _u,llong _x) {u = _u,x = _x;}
bool operator <(const DijNode &arg) const {return x>arg.x;}
};
priority_queue<DijNode> pq;
llong dis[N+3];
bool vis[N+3];
llong d[5],x;
int n,en;
void addedge(int u,int v,llong w)
{
en++; e[en].v = v; e[en].w = w;
e[en].nxt = fe[u]; fe[u] = en;
}
void Dijkstra()
{
memset(dis,30,sizeof(dis)); memset(vis,0,sizeof(vis));
dis[0] = 0ll; pq.push(DijNode(0,0ll));
while(!pq.empty())
{
DijNode tmp = pq.top(); pq.pop(); int u = tmp.u;
if(tmp.x!=dis[u]) continue;
if(vis[u]) continue;
vis[u] = true;
for(int i=fe[u]; i; i=e[i].nxt)
{
int v = e[i].v;
if(dis[v]>dis[u]+e[i].w && vis[v]==false)
{
dis[v] = dis[u]+e[i].w;
pq.push(DijNode(v,dis[v]));
}
}
}
}
void clear()
{
for(int i=0; i<=en; i++) e[i].v = e[i].w = e[i].nxt = 0;
for(int i=0; i<=n; i++) fe[i] = 0;
en = n = 0;
}
llong solve(llong x)
{
if(x<0) return 0ll;
llong ret = x;
while(dis[ret%n]>ret) ret++;
return ret;
}
int main()
{
int T; scanf("%d",&T);
while(T--)
{
scanf("%lld%lld%lld%lld%lld",&x,&d[1],&d[2],&d[3],&d[4]);
llong ans = INF,tmp;
n = min(min(d[1]+d[1],d[2]+d[2]),min(d[3]+d[3],d[4]+d[4]));
for(int i=0; i<n; i++)
{
for(int j=1; j<=4; j++)
{
addedge(i,(i+d[j]+d[j])%n,d[j]+d[j]);
}
}
Dijkstra();
tmp = solve(x-d[1]-d[2]-d[3]-d[4])+d[1]+d[2]+d[3]+d[4]; ans = min(ans,tmp);
tmp = solve(x-d[1]-d[1]-d[4]-d[4])+d[1]+d[1]+d[4]+d[4]; ans = min(ans,tmp);
tmp = solve(x-d[2]-d[2]-d[3]-d[3])+d[2]+d[2]+d[3]+d[3]; ans = min(ans,tmp);
clear();
n = min(d[1]+d[1],d[2]+d[2]);
for(int i=0; i<n; i++)
{
for(int j=1; j<=2; j++)
{
addedge(i,(i+d[j]+d[j])%n,d[j]+d[j]);
}
}
Dijkstra();
tmp = solve(x); ans = min(ans,tmp);
clear();
printf("%lld\n",ans);
}
return 0;
}
HDU 6071 Lazy Running (最短路)的更多相关文章
- hdu 6071 Lazy Running 最短路建模
Lazy Running Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others) P ...
- HDU 6071 - Lazy Running | 2017 Multi-University Training Contest 4
/* HDU 6071 - Lazy Running [ 建模,最短路 ] | 2017 Multi-University Training Contest 4 题意: 四个点的环,给定相邻两点距离, ...
- HDU 6071 Lazy Running (同余最短路 dij)
Lazy Running Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)To ...
- HDU 6071 Lazy Running (同余最短路)
Lazy Running Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)To ...
- HDU 6071 Lazy Running(很牛逼的最短路)
http://acm.hdu.edu.cn/showproblem.php?pid=6071 题意: 1.2.3.4四个点依次形成一个环,现在有个人从2结点出发,每次可以往它相邻的两个结点跑,求最后回 ...
- HDU 6071 Lazy Running(最短路)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6071 [题目大意] 给出四个点1,2,3,4,1和2,2和3,3和4,4和1 之间有路相连, 现在 ...
- 多校4 lazy running (最短路)
lazy running(最短路) 题意: 一个环上有四个点,从点2出发回到起点,走过的距离不小于K的最短距离是多少 \(K <= 10^{18} 1 <= d <= 30000\) ...
- HDU 6071 同余最短路 spfa
Lazy Running Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)To ...
- 2017 Multi-University Training Contest - Team 4 hdu6071 Lazy Running
地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6071 题目: Lazy Running Time Limit: 2000/1000 MS (J ...
随机推荐
- vc_redist x64 或者x86下载地址
https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads 微软的东西,果然还是人 ...
- Dango之模版系统
1.模板渲染 可以传列表,字典,对象等 {{ 变量 }} {% 逻辑 %} -- 标签 urls.py path('login/', views.login), views.py def login( ...
- mysql事务、redo日志、undo日志、checkpoint详解
转载: https://zhuanlan.zhihu.com/p/34650908 事务: 说起mysql innodb存储引擎的事务,首先想到就是ACID(不知道的请google),数据库是如何做到 ...
- 我爬的entityFramework的坑
老师使用的是mysql的数据库,但是我只有sqlserver的数据库,于是就照猫画虎,想连自己的sqlserver,结果一连跳了几个坑: 坑一:appsetting中的字符串连接是后面还有个s, 坑二 ...
- Linux之常用脚本
1) #检查php Money 队列脚本是否启动 php_count=`ps -ef | grep Money | grep -v "grep" | wc -l` ];then e ...
- html5_禁止复制网站内容
```//若是你不想别人复制你的网站内容,可以把这段js代码加到你网页上,即可屏蔽鼠标右键菜单.复制粘贴.选中等 有时候的需求是网站中有些内容不希望别人复制,那么就需要用代码控制.方法有多种:第一种: ...
- win7(64位旗舰版)visual studio 2017无法安装及vs2015闪退问题解决方式
折腾了两天,几乎试了网上说的所有方法(就差重装系统了,看到有人说重装系统之后还是同样的问题,果断放弃重装),visual studio 2017的安装问题终于解决了,为了帮助同样还在折腾的初级开发者们 ...
- 利用python3 爬虫 定制版妹子图mzitu爬取
在刚开始学爬虫的时候,用来练手的基础爬虫就是爬取各种妹子图片,前几天同时说了这个,便准备随便写一个...最后发现真是三天不练..什么都记不住了!!所以花了政治一天重新写了一个爬虫程序,并且支持按照时间 ...
- SecureCRT 连接 Centos7.0 (桥接模式),且能连接公网。
1.查看本地网络信息 ip:172.20.10.7 2.在VMware下配置Centos为桥接模式: 3.在Centos命令行输入 ip addr 查看Centos的mac地址 网口:eno16777 ...
- CDN和浏览器缓存
1,CDN 旨在解决的最重要的问题是什么,我们称之为网络延迟,通过网络获取资源总是比从本地获取慢,无论服务器是在同一个局域网中还是位于世界的另一个角落,都是如此.这里的速度差异是 IT 行业的一个核心 ...