在编译系统中,词法分析阶段是整个编译系统的基础。对于单词的识别,有限自动机FA是一种十分有效的工具。有限自动机由其映射f是否为单值而分为确定的有限自动机DFA和非确定的有限自动机NFA。在非确定的有限自动机NFA中,由于某些状态的转移需从若干个可能的后续状态中进行选择,故一个NFA对符号串的识别就必然是一个试探的过程。这种不确定性给识别过程带来的反复,无疑会影响到FA的工作效率。因此,对于一个非确定的有限自动机NFA M,经常的做法是构造一个确定的有限自动机DFA M’。

 有穷自动机(也称有限自动机)作为一种识别装置,能准确地识别正规集,即识别正规文法所定义的语言和正规式所表示的集合。引入有穷自动机理论,正是为词法分析程序的自动构造寻找特殊的方法和工具。
有穷自动机分为两类:确定的有穷自动机(Deterministic Finite Automata,DFA)和不确定的有穷自动机(Nondeterministic Finite Automata,NFA)。下面分别给出确定的有穷自动机和不确定的有穷自动机的定义、与其有关的概念、不确定的有穷自动机的确定化以及确定的有穷自动机的化简等算法。

 NFA转换为等价的DFA:在有穷自动机的理论里,有这样的定理:设L为一个由不确定的有穷自动机接受的集合,则存在一个接受L的确定的有穷自动机。这里不对定理进行证明,只介绍一种算法,将NFA转换成接受同样语言的DFA,这种算法称为子集法。宝阀为一个NFA构造相应的DFA的基本想法是让DFA的每一个状态对应NFA的一组状态。也就是让DFA使用它的状态去记录在NFA读入一个输入符号后可能达到的所有状态,在读入输入符号串a1a2...an,之后,DFA处在那样一个状态,该状态表示这个NFA的状态的一个子集T,T是从NFA的开始状态沿着某个标记为a1a2...an,的路径可以到达的那些状态构成的。

2|0题目:

1.设有 NFA M=( {0,1,2,3}, {a,b},f,0,{3} ),其中 f(0,a)={0,1}  f(0,b)={0}  f(1,b)={2}  f(2,b)={3}

画出状态转换矩阵,状态转换图,并说明该NFA识别的是什么样的语言。

  a b
0 0,1 0
1   2
2   3
3    

语言:(a | b)*abb

2.NFA 确定化为 DFA

1.解决多值映射:子集法

1). 上述练习1的NFA

    a b
A {0} {0,1} {0}
B {0,1} {0,1} {0,2}
C {0,2} {0,1} {0,3}
D {0,3} {0,1} {0}

DFA图:

2). P64页练习3

DFA状态转换矩阵

    0 1
A {S} {V,Q} {Q,U}
B {V,Q} {Z,V} {Q,U}
C {Q,U} {V} {Q,U,Z}
D {V} {Z}  
{Z,V} {Z} {Z}
{Q,U,Z} {Z,V}  {Q,Z} 
{Z}  {Z}   {Z} 
{Q,Z}   {Z}  {Q,Z} 

DFA图:

2.解决空弧:对初态和所有新状态求ε-闭包

1). 发给大家的图2

DFA状态转换矩阵

    0
 X  ε{A}={ABC}   ε{A}={ABC}   ε{B}={BC}   ε{C}={C}
 Y  ε{BC}    ε{B}={BC}  ε{C}={C} 
 Z  ε{C}       ε{C}={C}

DFA图:

语法:(0*11* | 0*)22*

2).P50图3.6

DFA状态转换矩阵

    a b
 0  ε{0}={01247}  ε{38}={3671248}  ε{5}={567124}
 1   ε{1234678}  ε{38}={1234678}  ε{59}={5671249}
 2   ε{124567}  ε{38}={3671248}  ε{5}={567124} 
 3   ε{1245679}  ε{38}={3671248}  ε{510}={56712410}
 4   ε{12456710}  ε{38}={3671248}  ε{5}={567124} 

DFA图:

子集法:

f(q,a)={q1,q2,…,qn},状态集的子集

将{q1,q2,…,qn}看做一个状态A,去记录NFA读入输入符号之后可能达到的所有状态的集合。

步骤:

1).根据NFA构造DFA状态转换矩阵

①确定DFA的字母表,初态(NFA的所有初态集)

②从初态出发,经字母表到达的状态集看成一个新状态

③将新状态添加到DFA状态集

④重复23步骤,直到没有新的DFA状态

2).画出DFA

3).看NFA和DFA识别的符号串是否一致。

NFA转换为等价的DFA的更多相关文章

  1. DFA与NFA的等价性,DFA化简

    等价性 对于每个NFA M存在一个DFA M',使得L(M)=L(M')--------等价性证明,NFA的确定化 假定NFA M=<S, Σ, δ, S 0 , F>,我们对M的状态转换 ...

  2. 《编译原理》构造与正规式 (0|1)*01 等价的 DFA - 例题解析

    <编译原理>构造与正规式 (0|1)*01 等价的 DFA - 例题解析 解题步骤: NFA 状态转换图 子集法 DFA 的状态转换矩阵 DFA 的状态转图 解: 已给正规式:(0|1)* ...

  3. 编译原理实验 NFA子集法构造DFA,DFA的识别 c++11实现

    实验内容 将非确定性有限状态自动机通过子集法构造确定性有限状态自动机. 实验步骤 1,读入NFA状态.注意最后需要设置终止状态. 2,初始态取空,构造DFA的l0状态,将l0加入未标记状态队列que ...

  4. 自动构造词法分析器的步骤——正规式转换为最小化DFA

    正规式-->最小化DFA 1.先把正则式-->NFA(非确定有穷自动机) 涉及一系列分解规则 2.再把NFA通过"子集构造法"-->DFA 通过子集构造法将NFA ...

  5. 练习2-3:十六进制数字字符串转换为等价整型值,字符串允许包含的数字包括:0~9、a~f、A~F、x、X(C程序设计语言 第2版)

    #include <stdio.h> #include <string.h> #include <math.h> int htoi(char s[]){ unsig ...

  6. 非确定的自动机NFA确定化为DFA

    摘要: 在编译系统中,词法分析阶段是整个编译系统的基础.对于单词的识别,有限自动机FA是一种十分有效的工具.有限自动机由其映射f是否为单值而分为确定的有限自动机DFA和非确定的有限自动机NFA.在非确 ...

  7. C# 词法分析器(四)构造 NFA

    系列导航 (一)词法分析介绍 (二)输入缓冲和代码定位 (三)正则表达式 (四)构造 NFA (五)转换 DFA (六)构造词法分析器 (七)总结 有了上一节中得到的正则表达式,那么就可以用来构造 N ...

  8. Atitit 发帖机系列(7) 词法分析的方法attilax大总结)

    Atitit 发帖机系列(7) 词法分析的方法attilax大总结) 1.1. 词法分析貌似俩大方法,一个直接根据状态图转换,一个根据dfa1 1.2. switchcase或者ifelse 最原始方 ...

  9. C# 词法分析器(三)正则表达式

    系列导航 (一)词法分析介绍 (二)输入缓冲和代码定位 (三)正则表达式 (四)构造 NFA (五)转换 DFA (六)构造词法分析器 (七)总结 正则表达式是一种描述词素的重要表示方法.虽然正则表达 ...

随机推荐

  1. U-Boot Driver Model领域模型设计 (转)

    需求分析 在2014年以前,uboot没有一种类似于linux kernel的设备驱动模型,随着uboot支持的设备越来越多,其一直受到如下问题困扰: 设备初始化流程都独立实现,而且为了集成到系统,需 ...

  2. 支付宝支付之扫码支付(电脑网站支付)、H5支付(手机网站支付)相关业务流程分析总结

    前言 在上一篇文章<微信支付之扫码支付.公众号支付.H5支付.小程序支付相关业务流程分析总结>中,分析和总结了微信支付相关支付类型的业务流程,这里作为与微信支付平起平坐不相伯仲的支付宝支付 ...

  3. C++ Primer 第 5 版 习题参考答案

    从 5 月初 - 8 月 16 日,每天基本都在啃 C++ 的语法.起初直接看C++ Primer 中文版(第 5 版),发现后边的章节看着很吃力.所以就转而看了清华大学郑莉老师和李超老师的视频C++ ...

  4. 洛谷P3402 可持久化并查集

    n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 说是可持久化并查集,实际上是 ...

  5. Mybatis运用到的3种设计模式

    Mybatis运用到的3种设计模式 1.构造者模式2.工厂模式3.代理模式1.构造者模式 使用SqlSessionFactoryBuilder,根据核心配置文件,构造一个SqlSessionFacto ...

  6. 更新protobuf

    sudo pip install --upgrade protobuf sudo apt-get install libprotobuf-dev protobuf-compiler这个不知道是什么问题 ...

  7. matplotlib 模块

    目录 matplotlib 模块 1.条形图 2.直方图 3.折线图 4.散点图+直线图 5.饼图 6. plot 函数参数 7.图像标注参数 matplotlib 模块 1.条形图 import m ...

  8. [人物存档]【AI少女】【捏脸数据】气质学生

    点击下载(城通网盘): AISChaF_20191119010459547.png

  9. Mybatis-Plus的BaseMapper的用法

    1.如何使用BaseMapper进行数据库的操作. 2.使用BaseMapper进行插入实体时如何让UUID的主键自动生成. Student实体类,其中id属性主键为UUID package com. ...

  10. BZOJ 2434: [Noi2011]阿狸的打字机 AC自动机+fail树+线段树

    Description 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母. 经阿狸研究发现,这个打字机是这样工作的 ...