传送门

解题思路

  首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f[i-1][j]\)。这个转移复杂度是\(O(n*A)\)的,无法通过此题。考虑优化,打个表发现这其实是一个多项式,次数可以用差分法确定,然后用拉格朗日插值即可。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath> using namespace std;
const int MAXN = 505;
typedef long long LL; int n,A,MOD;
LL f[MAXN<<2][MAXN<<2],ans; inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=(LL)ret*x%MOD;
x=(LL)x*x%MOD;
}
return ret;
} signed main(){
scanf("%d%d%d",&A,&n,&MOD);
f[0][0]=1;
for(int i=1;i<=n*3;i++){
f[i][0]=f[i-1][0];
for(int j=1;j<=i;j++){
f[i][j]=(LL)f[i-1][j-1]*i%MOD*j%MOD+f[i-1][j];
f[i][j]%=MOD;
}
}
LL s1,s2;
if(A<=n*3) {printf("%lld\n",f[A][n]);return 0;}
for(int i=n;i<=n*3;i++){
s1=s2=1ll;
for(int j=n;j<=n*3;j++)if(i!=j){
s1=s1*(A-j)%MOD;
s2=s2*(i-j)%MOD;
}
s1=(s1+MOD)%MOD;s2=(s2+MOD)%MOD;
ans=ans+s1%MOD*fast_pow(s2,MOD-2)%MOD*f[i][n]%MOD;ans%=MOD;
}
printf("%lld",ans);
return 0;
}

BZOJ 2655: calc(拉格朗日插值)的更多相关文章

  1. bzoj 2655 calc —— 拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][ ...

  2. bzoj 2655 calc——拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先考虑DP.dp[ i ][ j ]表示值域为 i .选 j 个值的答案,则 dp[ ...

  3. bzoj 2566 calc 拉格朗日插值

    calc Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 377  Solved: 226[Submit][Status][Discuss] Descr ...

  4. BZOJ.2655.calc(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...

  5. P4463 [集训队互测2012] calc 拉格朗日插值 dp 多项式分析

    LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不 ...

  6. bzoj 2655: calc [容斥原理 伯努利数]

    2655: calc 题意:长n的序列,每个数\(a_i \in [1,A]\),求所有满足\(a_i\)互不相同的序列的\(\prod_i a_i\)的和 clj的题 一下子想到容斥,一开始从普通容 ...

  7. [BZOJ 2655]calc

    Description 题库链接 给出 \(A,n,p\) ,让你在模 \(p\) 意义下求所有序列 \(a\) 满足"长度为 \(n\) 且 \(a_i\in[1,A]\) ,并且对于 \ ...

  8. BZOJ 2655 calc (组合计数、DP、多项式、拉格朗日插值)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2655 题解 据说有一种神仙容斥做法,但我不会. 以及貌似网上大多数人的dp和我的做法都不 ...

  9. bzoj千题计划269:bzoj2655: calc (拉格朗日插值)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...

随机推荐

  1. jdbc 事物

    package transaction; import jdbc.utils.*; import java.sql.Connection; import java.sql.PreparedStatem ...

  2. MySql 5.7.26(MySQL8)安装教程

    近期更换服务器,在此再记录一遍mysql 安装教程 1.下载 https://cdn.mysql.com//Downloads/MySQLInstaller/mysql-installer-commu ...

  3. 框架-.NET:ASP.NET Core

    ylbtech-框架-.NET:ASP.NET Core ASP.NET Core是一个免费且开放源代码的Web框架,以及由微软和社区开发的下一代ASP.NET.它是一个模块化框架,既可以Window ...

  4. JS-日期和时间

    # 格式化日期和时间 扩展 Date: Date.prototype.format = function(format){ var o = { "M+" : this.getMon ...

  5. 70、saleforce的Json输出

    List<Merchandise__c> merchandise = [select Id,Name,Price__c,Quantity__c from Merchandise__c li ...

  6. 【git】git的内部原理

    参考文章:https://zhuanlan.zhihu.com/p/96631135 参考文章:https://marklodato.github.io/visual-git-guide/index- ...

  7. Flask-Restless初步了解

    Flask-Restless是Flask框架的一个扩展库 1. 功能介绍      通过使用SQLAlchemy或Flask-SQLAlchemy框架定义的数据库模型,提供一个简单的ReSTful A ...

  8. Eclipse Missing artifact jdk.tools:jdk.tools:jar:1.6

    Missing artifact jdk.tools:jdk.tools:jar:1.6 问题出在Eclipse Maven的支持上,在Eclipse下,java.home变量设置为用于启动Eclip ...

  9. c#网络通信框架networkcomms内核解析之一 消息传送

    networkcomms.net 来自英国的网络通信框架 官方网址 www.networkcomms.net 中文网址www.networkcomms.cn 在网络通信程序中,本地的类或者对象,要传输 ...

  10. docker部署一个简单的mian.py项目文件

    安装docker yum install -y docker  启动docker systemctl start docker   查询可安装的Python版本,默认centos python 2.7 ...