paper 148: Face Databases
持续更新ing~
1、人脸检测数据库:
(1999年发布)CMU+MIT:180幅图像,共734个人脸。包含3个正面人脸测试子集和一个旋转人脸测试子集,其中正面人脸测试子集有130幅图像,共511个人脸;旋转人脸测试子集有50幅图像,共223个人脸。
http://vasc.ri.cmu.edu/idb/html/face/frontal_images/
(2010年发布)FDDB:2845幅图像,共5171个人脸。
http://vis-www.cs.umass.edu/fddb/index.html
(2012年发布)AFW:205幅图像,共468个人脸。由从Flickr采集的205幅图像组成,共468个人脸,其包含复杂的背景变化和人脸姿态变化等。
http://www.ics.uci.edu/~xzhu/face/
(2015年发布)MALF: 5250幅图像,共11931个人脸。
http://www.cbsr.ia.ac.cn/faceevaluation/
(2015年发布)IJB-A:24327幅图像,共49759个人脸
www.nist.gov/itl/iad/ig/ijba_request.cfm
(2016年发布)WIDER:32203幅图像,共393703个人脸
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace
2、人脸关键点检测数据库:
(2001年发布)BioID :约1000幅图像,每个人脸标定20个关键点。 https://www.bioid.com/About/BioID-Face-Database
(2011年发布)LFPW:1132幅图像,每个人脸标定29个关键点http://neerajkumar.org/databases/lfpw/
(2011年发布)AFLW:25993幅图像,每个人标定21个关键点
https://lrs.icg.tugraz.at/research/aflw/
(2013年发布)COFW:1852幅图像,每个人脸标定29个关键点
http://www.vision.caltech.edu/xpburgos/
(2014年发布)ICCV13/MVFW :2500幅图像,每个人脸标定68个关键点
https://sites.google.com/site/junliangxing/codes
(2014年发布)OCFW: 3837幅图像,每个人脸标定68个关键点
https://sites.google.com/site/junliangxing/codes
(2016年发布)300-W :600幅图像,每个人标定68个关键点http://ibug.doc.ic.ac.uk/resources/300-W_IMAVIS/
3、人脸识别数据库:
(2004年发布)CASPEAL:约1000个人,共约3万幅人脸图像
http://www.jdl.ac.cn/peal/index.html
(2008年发布)Multi-PIE:337个人,共约75万图像
http://www.flintbox.com/public/project/4742/
(2007年发布)LFW :5749个人,共13233幅人脸图像
http://vis-www.cs.umass.edu/lfw/
(2009年发布)PubFig :200个人,共58797幅人脸图像
http://www.cs.columbia.edu/CAVE/databases/pubfig/
(2014年发布)CASIAWebFace :10575个人,共49414幅人脸图像
http://www.cbsr.ia.ac.cn/english/CASIAWebFace-Database.html
(2014年发布)FaceScrub :530个人,共106863幅人脸图像
http://vintage.winklerbros.net/facescrub.html
(2016年发布)MegaFace :约69万个人,共约100万幅人脸图像
http://megaface.cs.washington.edu/
4、人脸属性识别数据库:
(1999年发布)JAFFE:10个人,共213幅人脸图像(表情识别)
http://www.kasrl.org/jaffe.html
(2010年发布)CK+ :123个人,共593段视频(表情识别)
http://www.pitt.edu/~emotion/ck-spread.htm
(2010年发布)MMI :75个人,共2900段视频(表情识别)
(2003年发布)FG-NET:82个人,共1002幅人脸图像(年龄识别)
http://%20www-prima.inrialpes.fr/FGnet/html/benchmarks.html
(2006年发布)MORPH:13673个人,共55608 幅图像(年龄识别)
http://www.faceaginggroup.com/morph/%20(2014年发布)Adience : 2284个人,共26580幅人脸图像(年龄、性别识别)
http://www.openu.ac.il/home/hassner/Adience/data.html
(2015年发布)IMDBWIKI :20284个人,共523051幅人脸图像(年龄、性别识别)
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/%20%20
(2015年发布)CACD2000 :2000个人,共163446幅人脸图像(年龄识别)
http://bcsiriuschen.github.io/CARC/
(2015年发布)CelebA:10177个人,共202599幅人脸图像(属性识别)
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
5、其他数据库(活体检测):
YouTube 名人2008 47个人,共1910段视频
http://seqam.rutgers.edu/site/media/data_files/ytcelebrity.tar
YouTube 2011 1595个人,共3425段视频
http://www.cs.tau.ac.il/~wolf/ytfaces/
KFW 2012 533对亲属关系(KFW-I)和1000 对亲属关系(KFW-II)
http://www.kinfacew.com/download.html
CASIA 2012 50个人,每个人12段视频
http://www.cbsr.ia.ac.cn/english/FaceAntiSpoofDatabases.asp
Replay-Attack2012 50个人,每个人24段视频
https://www.idiap.ch/dataset/replayattack
活体检测数据库简介:
|
Database |
Year of release |
# subjects |
# videos |
Acquisition camera device |
Attack type |
Subject race |
Subject gender |
Subject age |
|
NUAA [1] |
2010 |
15 |
•24 genuine • 33 spoof |
• Web-cam (640 × 480) |
• Printed photo |
• Asian 100% |
• Male 80% • Female 20% |
20 to 30 yrs |
|
Idiap REPLAYATTACK [2][3][4] |
2012 |
50 |
• 200 genuine • 1,000 spoof |
• MacBook 13’’ camera (320 × 240) |
• Printed photo • Display photo (mobile/HD) • Replayed video (mobile/HD) |
• White 76% • Asian 22% • Black 2% |
• Male 86% • Female 14% |
20 to 40 yrs |
|
CASIA FASD [5] |
2012 |
50 |
• 150 genuine • 450 spoof |
• Low-quality camera (640 × 480) • Normal-quality camera (480 × 640) • Sony NEX-5 camera (1280 × 720) |
• Printed photo •Cut photo② • Replayed video (HD) |
• Asian 100% |
• Male 86% • Female 14% |
20 to 35 yrs |
|
MSU MFSD [6] |
2014 |
55① |
• 110 genuine • 330 spoof |
• MacBook Air 13” camera (640 × 480) • Google Nexus 5 camera (720 × 480) |
• Printed photo • Replayed video (mobile/HD) |
• White 70% • Asian 28% • Black 2% |
• Male 63% • Female 37% |
20 to 60 yrs |
|
The Oulu-NPU face anti-spoofing database |
2016 |
55 |
• 990 genuine • 3,960 spoof |
• Front cameras of six mobile devices(1080×1920) (SamsungGalaxy S6 edge, HTC Desire EYE, MEIZU X5, ASUS Zenfone Selfie, Sony XPERIA C5 Ultra Dual and OPPO N3) |
• Two printed photo • Two replayed video (mobile/HD) |
• White 4% • Asian 96% |
• Male 69% • Female31% |
20 to 60 yrs |
注:① MSU MFSD中55个人的数据,只有35个人的数据可以公开使用。
②“Cut photo attack”表示将打印图片中眼睛部位剪掉,攻击者用他的照片盖住他的脸,并且可以在洞里眨眼睛。
6、USTC-NVIE Database[(natural visible and infrared facial expression database)]
该数据库是由中国科学技术大学安徽省计算与通信软件重点实验室建成并发布,是目前世界较为全面的人脸表情数据库,其中包含大约100名被试三种光照条件下六种表情的可见图像以及长波红外图像,另外表情又分为自发表情与人为表情,人为表情又分为戴眼镜与不戴眼镜两种情况。为进行(自发+人为)表情识别与情绪分析推理实验提供了充足的实验样本与数据。
数据库主页:http://nvie.ustc.edu.cn/
发布地址:http://sspnet.eu/2010/08/ustc-nvie-natural-visible-and-infrared-facial-expression-database/
■Annotated Database (Hand, Meat, LV Cardiac, IMM face) (Link)
■AR Face Database (Link)
■BioID Face Database (Link)
■Caltech Computational Vision Group Archive (Cars, Motorcycles, Airplanes, Faces, Leaves, Background) (Link)
■Carnegie Mellon Image Database (motion, stereo, face, car, ...) (Link)
■CAS-PEAL Face Database (Link)
■CMU Cohn-Kanade AU-Coded Facial Expression Database (Link)
■CMU Face Detection Databases (Link)
■CMU Face Expression Database (Link)
■CMU Face Pose, Illumination, and Expression (PIE) Database (Link)
■CMU VASC Image Database (motion, road sequences, stereo, CIL’s stereo data with ground truth, JISCT, face, face expressions, car) (Link)
■Content-based Image Retrieval Database (Link)
■Face Video Database of the Max Planck Institute for Biological Cybernetics (Link)
■FERET Database (Link)
■FERET Color Database (Link)
■Georgia Tech Face Database (Link)
■German Fingerspelling Database (Link)
■Indian Face Database ([url=http://vis-www.cs.umass.edu/~vidit/IndianFaceDatabase/]Link[/url])
■MIT-CBCL Car Database (Link)
■MIT-CBCL Face Recognition Database (Link)
■MIT-CBCL Face Databases (Link)
■MIT-CBCL Pedestrian Database (Link)
■MIT-CBCL Street Scenes Database (Link)
■NIST/Equinox Visible and Infrared Face Image Database (Link)
■NIST Fingerprint Data at Columbia (Link)
■ORL Database of Faces (Link)
■Rutgers Skin Texture Database (Link)
■The Japanese Female Facial Expression (JAFFE) Database (Link)
■The Ohio State University SAMPL Image Database (3D, still, motion) (Link)
■The University of Oulu Physics-Based Face Database (Link)
■UMIST Face Database (Link)
■USF Range Image Data (with ground truth) (Link)
■Usenix Face Database (hundreds of images, several formats) (Link)
■UCI Machine Learning Repository (Link)
■USC-SIPI Image Database (collection of digitized images) (Link)
■UCD VALID Database (multimodal for still face, audio, and video) (Link)
■UCD Color Face Image (UCFI) Database for Face Detection (Link)
■UCL M2VTS Multimodal Face Database (Link)
■Vision Image Archive at UMass (sequences, stereo, medical, indoor, outlook, road, underwater, aerial, satellite, space and more) (Link)
■Where can I find Lenna and other images? (Link)
■Yale Face Database (Link)
■Yale Face Database B (Link)
7、Other Database
1、Humaine - a collection of emotional databases:
http://emotion-research.net/wiki/Databases
2、AR Face Database (AR):
http://rvl1.ecn.purdue.edu/~aleix/aleix_face_DB.html
3、BioID Face Database (BioID):
http://www.humanscan.de/support/downloads/facedb.php
4、Brodatz Texture Database (Brodatz):
5、Butterfly Database (BDB):
http://www-cvr.ai.uiuc.edu/ponce_grp/data
6、CMU Frontal Face Database (CMUFF):
http://vasc.ri.cmu.edu//idb/html/face/frontal_images/index.html
7、CMU PIE Database (CMUPIE):
http://www.ri.cmu.edu/projects/project_418.html
8、CMU Profile Face Database (CMUPF):
http://vasc.ri.cmu.edu//idb/html/face/profile_images/index.html
9、Columbia-Utrecht Reflectance and Texture Database (CUReT):
10、Corel Gallery Magic 65000 (CGM):
11、CVL Database (CVL):
http://www.lrv.fri.uni-lj.si/facedb.html
12、Data Becker 222222 Premium Cliparts (DBPC):
13、M2VTS Multimodal Face Database ():
http://www.tele.ucl.ac.be/PROJECTS/M2VTS/m2fdb.html
14、MIT CBCL Car Database (MITC):
http://cbcl.mit.edu/cbcl/software-datasets/CarData.html
15、MIT CBCL Face Database (MITF):
http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
16、MIT CBCL Face Recognition Database ():
http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html
17、MIT CBCL Pedestrian Database (MITP):
http://cbcl.mit.edu/cbcl/software-datasets/PedestrianData.html
18、Object Recognition Database (ORDB):
http://www-cvr.ai.uiuc.edu/ponce_grp/data
19、ORL Database of Faces (ORL):
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
20、OUTex (OUTex):
21、PETS 2000 Dataset (PETS2000):
22、PETS 2001 Dataset (PETS2001):
23、PETS 2002 Dataset (PETS2002):
24、PETS 2005 Dataset (PETS2005):
25、PETS-ECCV 2004 Dataset (PETSECCV2004):
26、PETS-ICVS 2003 Dataset (PETSICVS2003):
27、PhoTex (PhoTex):
28、Pilot European Image Processing Archive (PEIPA):
http://peipa.essex.ac.uk/
29、Talking Face Video ():
30、Texture Database (TDB):
http://www-cvr.ai.uiuc.edu/ponce_grp/data
31、Texture Database for the Measurement of Texture classification algorithms (MeasTex):
32、The Color FERET Database ():
http://www.itl.nist.gov/iad/humanid/colorferet/home.html
33、The Extended M2VTS Database (XM2VTSDB ):
http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb/
34、The FERET Database ():
http://www.itl.nist.gov/iad/humanid/feret/
35、The Japanese Female Facial Expression (JAFFE) Database (JAFFE):
http://www.kasrl.org/jaffe.html
36、The M2VTS Database (M2VTS): http://www.tele.ucl.ac.be/PROJECTS/M2VTS/m2fdb.html
37、The Psychological Image Collection at Stirling (PICS):
http://pics.psych.stir.ac.uk/cgi-bin/PICS/New/pics.cgi
38、The UMIST Face Database (UMIST):
39、The University of Oulu Physics-Based Face Database (UOFD):
http://www.ee.oulu.fi/research/imag/color/pbfd.html
40、The Yale Face Database (YFD):
http://cvc.yale.edu/projects/yalefaces/yalefaces.html
41The Yale Face Database B (YFDB):
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
42、Vision Texture Database (VisTex):
43、VS-PETS 2003 Dataset (VSPETS2003):
Other useful links:(上述数据库及其它数据库的简介)
1、http://www.face-rec.org/databases/
2、http://web.mit.edu/emeyers/www/face_databases.html
参考来源:[1] 严严,陈日伟,王菡子.基于深度学习的人脸分析研究进展[J].厦门大学学报(自然科学版),2017,56(1):13-24.
[2] Di Wen, Member, IEEE, Hu Han, Member, IEEE and Anil K. Jain, “Face Spoof Detection with Image Distortion Analysis”, in IEEE Transactions on Information Forensics and
Security,2015,pp.1–16.
[3] http://blog.csdn.net/u012374174/article/details/71420766
[4] http://www.cnblogs.com/leivo/archive/2008/11/11/1331675.html
paper 148: Face Databases的更多相关文章
- RESEACH PAPER
个,proquest的username和password赫然在目,别急,再看第4个结 果"HB Thompson Subscription Online Databases", ...
- paper 156:专家主页汇总-计算机视觉-computer vision
持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepa ...
- 写essay和research paper必用的17个网站
1.http://scholar.google.com/ 虽然还是Beta版,但个人已觉得现在已经是很好很强大了,Google学术搜索滤掉了普通搜索结果中大量的垃圾信息,排列出文章的不同版本以及被其它 ...
- How to implement an algorithm from a scientific paper
Author: Emmanuel Goossaert 翻译 This article is a short guide to implementing an algorithm from a scie ...
- paper 92:图像视觉博客资源2之MIT斯坦福CMU
收录的图像视觉(也包含机器学习等)领域的博客资源的第二部分,包含:美国MIT.斯坦福.CMU三所高校 1)这些名人大家一般都熟悉,本文仅收录了包含较多资料的个人博客,并且有不少更新,还有些名人由于分享 ...
- paper 61:计算机视觉领域的一些牛人博客,超有实力的研究机构等的网站链接
转载出处:blog.csdn.net/carson2005 以下链接是本人整理的关于计算机视觉(ComputerVision, CV)相关领域的网站链接,其中有CV牛人的主页,CV研究小组的主页,CV ...
- Core Java Volume I — 1.2. The Java "White Paper" Buzzwords
1.2. The Java "White Paper" BuzzwordsThe authors of Java have written an influential White ...
- 如何写出优秀的研究论文 Chapter 1. How to Write an A+ Research Paper
This Chapter outlines the logical steps to writing a good research paper. To achieve supreme excelle ...
- SCI&EI 英文PAPER投稿经验【转】
英文投稿的一点经验[转载] From: http://chl033.woku.com/article/2893317.html 1. 首先一定要注意杂志的发表范围, 超出范围的千万别投,要不就是浪费时 ...
随机推荐
- moment.js 时间库
一.概念: https://www.cnblogs.com/Jimc/p/10591580.html 或 http://momentjs.cn/(官网) 1.Moment.js是一个 ...
- python实现计时器(装饰器)
1.写一个装饰器,查看函数执行的时间 import time # 装饰器run_time,@run_time加在谁头上,谁就是参数fundef run_time(fun): start_time = ...
- JavaScript 中的dispatchEvent是怎么用的
https://zhidao.baidu.com/question/1859896201945858587.html https://www.cnblogs.com/playerlife/archiv ...
- codeforces gym 100345I Segment Transformations [想法题]
题意简述 给定一个由A C G T四个字母组成的密码锁(每拨动一次 A变C C变G G变T T变A) 密码锁有n位 规定每次操作可以选取连续的一段拨动1~3次 问最少几次操作可以将初始状态变到末状态 ...
- vue项目在IE下显示空白打不开问题
近期遇到了项目是vue做的,在IE浏览器下打不开,显示空白问题,解决方案如下: 打不开的原因是因为少了babel-polyfill处理器,所以第一步需要下载: npm install babel-po ...
- 距离矢量路由协议——RIP
距离矢量路由协议RIP: 众所周知,RIP(Routing Information Protocol),即路由信息协议,是一种距离矢量路由协议,它与IGRP,OSPF等一样都是属于IGP(Interi ...
- Java导入
导入(import)声明用于将任何类型导入编译单元.导入(import)声明出现在包声明之后,第一个类型声明之前. 有两种类型的导入声明: 单类型导入声明 按需导入声明 单类型导入声明 单类型导入声明 ...
- Struts2后台使用Request和Session方法
在Struts2后台,如果需要使用Request和Session的话,可以通过下面的方法: 主要是利用了com.opensymphony.xwork2.ActionContext类以及ora.apac ...
- WPFの触发器详解
例子1 简单触发器Triggers——满足简答的条件,触发 <Window x:Class="Styles.SimpleTriggers" xmlns="http: ...
- 迄今为止把同步/异步/阻塞/非阻塞/BIO/NIO/AIO讲的这么清楚的好文章(快快珍藏)
常规的误区 假设有一个展示用户详情的需求,分两步,先调用一个HTTP接口拿到详情数据,然后使用适合的视图展示详情数据. 如果网速很慢,代码发起一个HTTP请求后,就卡住不动了,直到十几秒后才拿到HTT ...