题目链接

题意

给定一张边带权的无向图,求生成树的权值和是 k 的倍数的生成树个数模 p 的值。

\(n\leq 100,k\leq 100,p\mod k=1\)

Sol

看见整除然后 \(p\mod k=1\) ,那么可以套个单位根反演。

我们要求的东西就是:

\(\sum_{E}[k|(\sum_{e\in E}val_e)]\)

单位根反演一套:

\(\frac{1}{k}\sum_{E} \sum_{i=0}^{k-1} w_k^{(\sum_{e\in E}val_e)i}\)

然后又是常规操作:

\(\frac{1}{k}\sum_{i=0}^{k-1}\sum_{E} w_k^{(\sum_{e\in E}val_e)i}\)

\(\frac{1}{k}\sum_{i=0}^{k-1}\sum_{E} \prod_{e\in E} (w_k^{i})^{val_e}\)

把一条边的边权看作 \((w_k^{i})^{val_e}\) 矩阵树定理求一下就做完了。

code:

#include<bits/stdc++.h>
#define Set(a,b) memset(a,b,sizeof(a))
using namespace std;
int mod;
template <typename T> inline void init(T&x){
x=0;char ch=getchar();bool t=0;
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') t=1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+(ch-48);
if(t) x=-x;return;
}
typedef long long ll;
template <typename T>inline void Inc(T&x,int y){x+=y;if(x>=mod) x-=mod;return;}
template <typename T>inline void Dec(T&x,int y){x-=y;if(x < 0) x+=mod;return;}
template <typename T>inline int fpow(int x,T k){int ret=1;for(;k;k>>=1,x=(ll)x*x%mod) if(k&1) ret=(ll)ret*x%mod;return ret;}
int Sum(int x,int y){x+=y;if(x>=mod) return x-mod;return x;}
int Dif(int x,int y){x-=y;if(x < 0 ) return x+mod;return x;}
const int N=101;
int n,m,k,p,g;
struct edge{
int u,v,c;
}E[N*N];
namespace Matrix_Tree{
int a[N][N];
inline void Build(int w){
Set(a,0);
for(int i=1;i<=m;++i) {
int u=E[i].u,v=E[i].v,c=E[i].c;
int val=fpow(w,c);
Dec(a[u][v],val),Dec(a[v][u],val);
Inc(a[u][u],val),Inc(a[v][v],val);
}return;
}
inline int Gauss(int n){
int f=0;
for(int i=1;i<=n;++i) {
int p=i;
for(int j=i;j<=n;++j) {if(a[i][j]) {p=j;break;}}
if(p!=i) f^=1,swap(a[p],a[i]);
int inv=fpow(a[i][i],mod-2);
for(int j=i+1;j<=n;++j){
if(!a[j][i]) continue;
int t=Dif(0,(ll)a[j][i]*inv%mod);
for(int k=i;k<=n;++k) Inc(a[j][k],(ll)a[i][k]*t%mod);
}
}
int ret=1;
for(int i=1;i<=n;++i) ret=(ll)ret*a[i][i]%mod;
if(f) ret=Dif(0,ret);return ret;
}
}
inline void Getroot(int mod){
int x=mod-1;static int pri[50],cnt=0;
for(int i=2;i*i<=x;++i) if(x%i==0) {pri[++cnt]=i,x/=i;while(x%i==0) x/=i;}
for(g=2;;++g){bool fl=1;
for(int i=1;i<=cnt;++i) if(fpow(g,(mod-1)/pri[i])==1) {fl=0;break;}
if(fl)return;
}
}
int main()
{
init(n),init(m),init(k),init(p);
mod=p;Getroot(mod);int u,v,c;
for(int i=1;i<=m;++i){init(u),init(v),init(c);E[i]=(edge){u,v,c};}
int W=fpow(g,(mod-1)/k);
int w=1,ans=0;
for(int i=0;i<k;++i,w=(ll)w*W%mod) {
Matrix_Tree::Build(w);
Inc(ans,Matrix_Tree::Gauss(n-1));
}
ans=(ll)ans*fpow(k,mod-2)%mod;
cout<<ans<<endl;
return 0;
}

【牛客Wannafly挑战赛23】F 计数的更多相关文章

  1. 牛客Wannafly挑战赛23 B.游戏

    游戏 题目描述 小N和小O在玩游戏.他们面前放了n堆石子,第i堆石子一开始有ci颗石头.他们轮流从某堆石子中取石子,不能不取.最后无法操作的人就输了这个游戏.但他们觉得这样玩太无聊了,更新了一下规则. ...

  2. 牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树)

    牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树) 链接:https://ac.nowcoder.com/acm/problem/15706 现在需要您来帮忙维护这个名册, ...

  3. 牛客网练习赛23 F 托米的游戏

    链接:https://www.nowcoder.com/acm/contest/156/F 来源:牛客网 题目描述 题目背景编不下去了 托米有一棵有根树 T, 树根为1,每轮他会在剩下的子树中等概率一 ...

  4. 牛客~~wannafly挑战赛19~A 队列

    链接:https://www.nowcoder.com/acm/contest/131/A来源:牛客网 题目描述 ZZT 创造了一个队列 Q.这个队列包含了 N 个元素,队列中的第 i 个元素用 Qi ...

  5. 牛客Wannafly挑战赛23F 计数(循环卷积+拉格朗日插值/单位根反演)

    传送门 直接的想法就是设 \(x^k\) 为边权,矩阵树定理一波后取出 \(x^{nk}\) 的系数即可 也就是求出模 \(x^k\) 意义下的循环卷积的常数项 考虑插值出最后多项式,类比 \(DFT ...

  6. 牛客 Wannafly 挑战赛26D 禁书目录 排列组合 概率期望

    原文链接https://www.cnblogs.com/zhouzhendong/p/9781060.html 题目传送门 - NowCoder Wannafly 26D 题意 放一放这一题原先的题面 ...

  7. 牛客Wannafly挑战赛26E 蚂蚁开会(树链剖分+线段树)

    传送门 题面描述 一颗n个节点的树,m次操作,有点权(该节点蚂蚁个数)和边权(相邻节点的距离). 三种操作: 操作1:1 i x将节点i的点权修改为x.(1 <= i <= n; 1 &l ...

  8. [牛客Wannafly挑战赛27D]绿魔法师

    description newcoder 给你一个空的可重集合\(S\). \(n\)次操作,每次操作给出\(x\),\(k\),\(p\),执行以下操作: \(opt\ 1\):在S中加入x. \( ...

  9. 牛客Wannafly挑战赛11E 白兔的刁难

    传送门 如果大力推单位根反演就可以获得一个 \(k^2logn\) 的好方法 \[ans_{t}=\frac{1}{k}\sum_{i=0}^{k-1}(w_k^{-t})^i(w_k^i+1)^n\ ...

随机推荐

  1. Delphi回车键切换焦点

    unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms ...

  2. 【ABAP系列】SAP ABAP 实现FTP的文件上传与下载

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP 实现FTP的文 ...

  3. cocos2dx基础篇(10) 按钮控件CCControlButton

    [3.x] (1)去掉 “CC” (2)对象类 CCObject 改为 Ref (3)按钮事件回调依旧为 cccontrol_selector ,没有使用 CC_CALLBACK_2 (4)按钮状态  ...

  4. TCP网络编程(Socket通讯)

    TCP 网路编程: 1.TCP 三次握手: 第一次握手,客户端向服务器端发出连接请求,等待服务器确认. 第二次握手,服务器端向客户端回送一个响应,通知客户端收到了连接请求. 第三次握手,客户端再次向服 ...

  5. 【Linux开发】OpenCV在ARM-linux上的移植过程遇到的问题1---cvNamedWindow调用报错的问题

    问题描述: 这个实际上是最后一部的问题,将生成的共享库文件放入到了/usr/local/opencv-arm/lib下,并且设置了LD_LIBRARY_PATH中为/usr/local/opencv- ...

  6. 20191112 Spring Boot官方文档学习(4.3)

    4.3.Profiles Spring Profiles提供了一种隔离部分应用程序配置并使之仅在某些环境中可用的方法.任何@Component,@Configuration或@Configuratio ...

  7. oracle_fdw安装及使用(无法访问oracle存储过程等对象)

    通过oracle_fdw可以访问oracle中的一些表和视图,也可以进行修改,尤其是给比较复杂的系统使用非常方便. (但不能使用oracle_fdw来访问oracle的存储过程.包.函数.序列等对象) ...

  8. ES6生成器与迭代器

    ES6迭代器的一个例子 function run(taskDef) { var task = taskDef(); var result = task.next(); // 递归执行迭代 functi ...

  9. Windows Server 2012 上安装 dotNET Framework v3.5

    Windows Server 2012不能直接运行dotNET Framework v3.5安装程序进行安装,系统提供通过服务器管理器的添加功能和角色向导进行安装. 安装的前几个步骤再这里略去,在默认 ...

  10. Linux菜狗入门(不停更新)

    资料来源:<腾讯课堂> 1, 计算机硬件包括CPU,内存,硬盘,声卡等等 2, 没有安装操作系统的计算机,通常被称为裸机 如果想在裸机上运行自己所编写的程序,就必须用机器语言书写程序 如果 ...