【牛客Wannafly挑战赛23】F 计数
题意
给定一张边带权的无向图,求生成树的权值和是 k 的倍数的生成树个数模 p 的值。
\(n\leq 100,k\leq 100,p\mod k=1\)
Sol
看见整除然后 \(p\mod k=1\) ,那么可以套个单位根反演。
我们要求的东西就是:
\(\sum_{E}[k|(\sum_{e\in E}val_e)]\)
单位根反演一套:
\(\frac{1}{k}\sum_{E} \sum_{i=0}^{k-1} w_k^{(\sum_{e\in E}val_e)i}\)
然后又是常规操作:
\(\frac{1}{k}\sum_{i=0}^{k-1}\sum_{E} w_k^{(\sum_{e\in E}val_e)i}\)
\(\frac{1}{k}\sum_{i=0}^{k-1}\sum_{E} \prod_{e\in E} (w_k^{i})^{val_e}\)
把一条边的边权看作 \((w_k^{i})^{val_e}\) 矩阵树定理求一下就做完了。
code:
#include<bits/stdc++.h>
#define Set(a,b) memset(a,b,sizeof(a))
using namespace std;
int mod;
template <typename T> inline void init(T&x){
x=0;char ch=getchar();bool t=0;
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') t=1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+(ch-48);
if(t) x=-x;return;
}
typedef long long ll;
template <typename T>inline void Inc(T&x,int y){x+=y;if(x>=mod) x-=mod;return;}
template <typename T>inline void Dec(T&x,int y){x-=y;if(x < 0) x+=mod;return;}
template <typename T>inline int fpow(int x,T k){int ret=1;for(;k;k>>=1,x=(ll)x*x%mod) if(k&1) ret=(ll)ret*x%mod;return ret;}
int Sum(int x,int y){x+=y;if(x>=mod) return x-mod;return x;}
int Dif(int x,int y){x-=y;if(x < 0 ) return x+mod;return x;}
const int N=101;
int n,m,k,p,g;
struct edge{
int u,v,c;
}E[N*N];
namespace Matrix_Tree{
int a[N][N];
inline void Build(int w){
Set(a,0);
for(int i=1;i<=m;++i) {
int u=E[i].u,v=E[i].v,c=E[i].c;
int val=fpow(w,c);
Dec(a[u][v],val),Dec(a[v][u],val);
Inc(a[u][u],val),Inc(a[v][v],val);
}return;
}
inline int Gauss(int n){
int f=0;
for(int i=1;i<=n;++i) {
int p=i;
for(int j=i;j<=n;++j) {if(a[i][j]) {p=j;break;}}
if(p!=i) f^=1,swap(a[p],a[i]);
int inv=fpow(a[i][i],mod-2);
for(int j=i+1;j<=n;++j){
if(!a[j][i]) continue;
int t=Dif(0,(ll)a[j][i]*inv%mod);
for(int k=i;k<=n;++k) Inc(a[j][k],(ll)a[i][k]*t%mod);
}
}
int ret=1;
for(int i=1;i<=n;++i) ret=(ll)ret*a[i][i]%mod;
if(f) ret=Dif(0,ret);return ret;
}
}
inline void Getroot(int mod){
int x=mod-1;static int pri[50],cnt=0;
for(int i=2;i*i<=x;++i) if(x%i==0) {pri[++cnt]=i,x/=i;while(x%i==0) x/=i;}
for(g=2;;++g){bool fl=1;
for(int i=1;i<=cnt;++i) if(fpow(g,(mod-1)/pri[i])==1) {fl=0;break;}
if(fl)return;
}
}
int main()
{
init(n),init(m),init(k),init(p);
mod=p;Getroot(mod);int u,v,c;
for(int i=1;i<=m;++i){init(u),init(v),init(c);E[i]=(edge){u,v,c};}
int W=fpow(g,(mod-1)/k);
int w=1,ans=0;
for(int i=0;i<k;++i,w=(ll)w*W%mod) {
Matrix_Tree::Build(w);
Inc(ans,Matrix_Tree::Gauss(n-1));
}
ans=(ll)ans*fpow(k,mod-2)%mod;
cout<<ans<<endl;
return 0;
}
【牛客Wannafly挑战赛23】F 计数的更多相关文章
- 牛客Wannafly挑战赛23 B.游戏
游戏 题目描述 小N和小O在玩游戏.他们面前放了n堆石子,第i堆石子一开始有ci颗石头.他们轮流从某堆石子中取石子,不能不取.最后无法操作的人就输了这个游戏.但他们觉得这样玩太无聊了,更新了一下规则. ...
- 牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树)
牛客wannafly 挑战赛14 B 前缀查询(trie树上dfs序+线段树) 链接:https://ac.nowcoder.com/acm/problem/15706 现在需要您来帮忙维护这个名册, ...
- 牛客网练习赛23 F 托米的游戏
链接:https://www.nowcoder.com/acm/contest/156/F 来源:牛客网 题目描述 题目背景编不下去了 托米有一棵有根树 T, 树根为1,每轮他会在剩下的子树中等概率一 ...
- 牛客~~wannafly挑战赛19~A 队列
链接:https://www.nowcoder.com/acm/contest/131/A来源:牛客网 题目描述 ZZT 创造了一个队列 Q.这个队列包含了 N 个元素,队列中的第 i 个元素用 Qi ...
- 牛客Wannafly挑战赛23F 计数(循环卷积+拉格朗日插值/单位根反演)
传送门 直接的想法就是设 \(x^k\) 为边权,矩阵树定理一波后取出 \(x^{nk}\) 的系数即可 也就是求出模 \(x^k\) 意义下的循环卷积的常数项 考虑插值出最后多项式,类比 \(DFT ...
- 牛客 Wannafly 挑战赛26D 禁书目录 排列组合 概率期望
原文链接https://www.cnblogs.com/zhouzhendong/p/9781060.html 题目传送门 - NowCoder Wannafly 26D 题意 放一放这一题原先的题面 ...
- 牛客Wannafly挑战赛26E 蚂蚁开会(树链剖分+线段树)
传送门 题面描述 一颗n个节点的树,m次操作,有点权(该节点蚂蚁个数)和边权(相邻节点的距离). 三种操作: 操作1:1 i x将节点i的点权修改为x.(1 <= i <= n; 1 &l ...
- [牛客Wannafly挑战赛27D]绿魔法师
description newcoder 给你一个空的可重集合\(S\). \(n\)次操作,每次操作给出\(x\),\(k\),\(p\),执行以下操作: \(opt\ 1\):在S中加入x. \( ...
- 牛客Wannafly挑战赛11E 白兔的刁难
传送门 如果大力推单位根反演就可以获得一个 \(k^2logn\) 的好方法 \[ans_{t}=\frac{1}{k}\sum_{i=0}^{k-1}(w_k^{-t})^i(w_k^i+1)^n\ ...
随机推荐
- C#单元测试Nunit小结
1. 下载和安装Nunit工具: NUnit是一款堪与JUnit齐名的开源的回归测试框架,供.net开发人员做单元测试之用,可以从www.nunit.org网站上免费获得,然后在系统中安装: 2. 在 ...
- lambda一些查询语句
<!--得分数据结构-->1 <Score> <studentid>1</studentid> <courseid>1</course ...
- springmvc 获取request response
RequestContextHolder 获取request public HttpServletRequest getRequest() { return ((ServletRequestAttri ...
- 【FICO系列】SAP FI模块-记账凭证FB01的BAPI
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[FICO系列]SAP FI模块-记账凭证FB0 ...
- 科普:PV,UV,VV,IP
1.PV PV即Page View,即页面浏览量或点击量,用户每一次对网站中的每个网页访问均被记录一次.用户对同一页面的多次访问,访问量累计. 2.UV UV即Unique Visitor,是指通过互 ...
- 社工 - By源码托管平台|云盘 - GitHub - 汇总
搜索规则 ()默认搜索是从master分支搜索代码 ()只有小于384k的代码才是可以搜索到的 ()搜索语句不能有特殊字符如. , : ; / \ ` ' " = * ! ? # $ &am ...
- 创建一个项目并在GitHub上发出拉取请求
1.第一步:创建存储库 创建新存储库: New repository 命名存储库 写一个简短的描述 选择使用自述文件初始化此存储库 2.第二步:创建一个分支 创建一个新分支 转到新的存储库hello- ...
- 第八周课程总结&实验报告六
实验六 Java异常 实验目的 理解异常的基本概念: 掌握异常处理方法及熟悉常见异常的捕获方法. 实验要求 练习捕获异常.声明异常.抛出异常的方法.熟悉try和catch子句的使用. 掌握自定义异常类 ...
- windows上利用dhcpsrv搭建DHCP服务器
起因是一个很奇葩的需求:乙方要远程升级仪器,用TeamViewer远程控制并ssh到仪器,但仪器内部IP地址没有写死,靠DHCP服务器获取.那么就要在PC建立DHCP服务器,用网线连接仪器,然后才能看 ...
- qtreewidget 显示保存xml文件
此文是读取和存储已知结构的xml,对于未知结构的xml,可以用递归方法读取和遍历.可参考文章:Qt遍历不规则树的节点. 1.QTreewidget设置 //折叠图标(三角图标)换成自定义图标 ui-& ...