1.Problem and Loss Function

 
Linear Regression is a Supervised Learning Algorithm with input matrix X and output label Y. We train a system to make hypothesis, which we hope to be as close to Y as possible. The system we build for Linear Regression is :
 
hθ(X)=θTX

From the initial state, we probably have a really poor system (may be only output zero). By using X and Y to train, we try to derive a better parameter θ. The training process (learning process) may be time-consuming, because the algorithm updates parameters only a little on every training step.

2. Cost Function?

Suppose driving from somewhere to Toronto: it is easy to know the coordinates of Toronto, but it is more important to know where we are now! Cost function is the tool giving us how different between  Hypothesis and label Y, so that we can drive to the target. For regression problem, we use MSE as the cost function.

 
This can be understood from another perspective. Suppose the difference between Y and H is ε, and ε~N(0,σ2). So, y~N(θTX,σ2). Then we do Maximum Likelihood Estimate, we can also get the same cost function. (https://stats.stackexchange.com/questions/253345/relationship-between-mle-and-least-squares-in-case-of-linear-regression)
 
 
3.Gradient Descent
 
The process of GD is quite like go downhill along the steepest direction on every dimension.
 
 
We take derivatives along every dimension
Then update all θ by a small learning rate alpha simultaneously:
 
4. Batch Learning, Stochastic and Mini Batch
 
In above, we use all the training examples together to calculate cost function and gradient. This method is called 'Batch Gradient Descent'. The issue here is: what if there is a exetremely large data set? The training process can be quitely long. A variant is called Stochastic Gradient Descent, also 'Online Learning'. Every time when it trains, the algorithm only uses a single training example, which may result in very zigzagged learning curve. Finally, the most popurlar version:' Mini-Batch Gradient Descent'. It chooses a small group of training example to learn, so the speed is OK, and the learning curve is more smooth.

Linear Regression and Gradient Descent (English version)的更多相关文章

  1. Linear Regression Using Gradient Descent 代码实现

    参考吴恩达<机器学习>, 进行 Octave, Python(Numpy), C++(Eigen) 的原理实现, 同时用 scikit-learn, TensorFlow, dlib 进行 ...

  2. 线性回归、梯度下降(Linear Regression、Gradient Descent)

    转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: ...

  3. 斯坦福机器学习视频笔记 Week1 Linear Regression and Gradient Descent

    最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...

  4. 斯坦福机器学习视频笔记 Week1 线性回归和梯度下降 Linear Regression and Gradient Descent

    最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...

  5. Linear Regression and Gradient Descent

    随着所学算法的增多,加之使用次数的增多,不时对之前所学的算法有新的理解.这篇博文是在2018年4月17日再次编辑,将之前的3篇博文合并为一篇. 1.Problem and Loss Function ...

  6. Logistic Regression and Gradient Descent

    Logistic Regression and Gradient Descent Logistic regression is an excellent tool to know for classi ...

  7. Logistic Regression Using Gradient Descent -- Binary Classification 代码实现

    1. 原理 Cost function Theta 2. Python # -*- coding:utf8 -*- import numpy as np import matplotlib.pyplo ...

  8. flink 批量梯度下降算法线性回归参数求解(Linear Regression with BGD(batch gradient descent) )

    1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最 ...

  9. machine learning (7)---normal equation相对于gradient descent而言求解linear regression问题的另一种方式

    Normal equation: 一种用来linear regression问题的求解Θ的方法,另一种可以是gradient descent 仅适用于linear regression问题的求解,对其 ...

随机推荐

  1. 在js里的ejs模板引擎使用

    1.首先需要在页面里引用ejs.min.js. 2.将你的模板使用ejs编写,并存成后缀名.stmpl;(可能需要在打包工具里做些处理) 3.在js里使用require引入xxx.stmpl: con ...

  2. 中标麒麟V6.0安装 mysql-5.7.26-linux-glibc2.12-x86_64.tar.gz

    在中标麒麟6.0上安装mysql, 1.先从官网(https://dev.mysql.com/downloads/mysql/5.7.html#downloads)下载 . 我的选择如上图. 2.下载 ...

  3. How to exploit the x32 recvmmsg() kernel vulnerability CVE 2014-0038

    http://blog.includesecurity.com/2014/03/exploit-CVE-2014-0038-x32-recvmmsg-kernel-vulnerablity.html ...

  4. 连接tomcat时,输入telnet localhost 8080后无法再次输入

    初次接触服务器时,一般会在本地建立一个微型服务器,今天在使用Apache的tomcat时,为了在命令行下访问服务器中webapps下的自定义资源:首先打开命令行窗口,然后输入telnet localh ...

  5. linux性能分析工具Uptime

  6. 解决图片插入word文档后清晰度降低的问题

    解决图片插入word文档后清晰度降低的问题 在默认情况下,word程序会自动压缩插入word文档中的图片以减小整个word文档的.当我们需要插入word文档中的图片保持原始清晰度时,可以通过设置wor ...

  7. ORACLE 查询所有表、外键、主键等信息

    Select   a.Owner 外键拥有者, a.Table_Name 外键表, c.Column_Name 外键列, b.Owner 主键拥有者, b.Table_Name 主键表, d.Colu ...

  8. Vue:对象更改检测注意事项

    还是由于 JavaScript 的限制,Vue 不能检测对象属性的添加或删除: var vm = new Vue({ data: { a: 1 } }) // `vm.a` 现在是响应式的 vm.b ...

  9. maven 配置自动本地/线上不同配置自动打包

    工程结构:在resource下新建开发,线上不同文件夹存放不同配置文件 pom.xml配置文件 <!-- maven配置不同环境打包 --> <build> <plugi ...

  10. spring 整合rabbitMQ

    <!-- 配置邮件消息队列监听 --> <bean id="maillistener" class="cn.xdf.wlyy.listener.Mail ...