HDU - 1024 M子段最大和 简单DP
如何确保每个段至少一个数是关键(尤其注意负数情况)
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iin(a) scanf("%d",&a)
#define lin(a) scanf("%lld",&a)
#define din(a) scanf("%lf",&a)
#define s0(a) scanf("%s",a)
#define s1(a) scanf("%s",a+1)
#define print(a) printf("%lld",(ll)a)
#define enter putchar('\n')
#define blank putchar(' ')
#define println(a) printf("%lld\n",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int maxn = 1e6+11;
const int oo = 0x3f3f3f3f;
const double eps = 1e-7;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n,m,a[maxn];
ll dp[maxn][2],mx[maxn];
//dp[i][j]:前i个数分j段的最优解
//dp[i][j]=max(dp[i-1][j],dp[x][j-1])+a[i]
int main(){
while(cin>>m>>n){
rep(i,1,n) a[i]=read();
memset(dp,0,sizeof dp);
int t=1;
rep(j,1,m){
dp[j][j&1]=dp[j-1][j-1&1]+a[j];//对角线初始化
ll mx=dp[j-1][j-1&1];
rep(i,j+1,n){//i-1>=j
mx=max(mx,dp[i-1][j-1&1]);
dp[i][j&1]=max(dp[i-1][j&1],mx)+a[i];
}
}
ll ans=-oo;
rep(i,m,n) ans=max(ans,dp[i][m&1]);
println(ans);
}
return 0;
}
附加错误代码
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iin(a) scanf("%d",&a)
#define lin(a) scanf("%lld",&a)
#define din(a) scanf("%lf",&a)
#define s0(a) scanf("%s",a)
#define s1(a) scanf("%s",a+1)
#define print(a) printf("%lld",(ll)a)
#define enter putchar('\n')
#define blank putchar(' ')
#define println(a) printf("%lld\n",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int maxn = 1e6+11;
const int oo = 0x3f3f3f3f;
const double eps = 1e-7;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n,m,a[maxn];
ll dp[maxn][2],mx[maxn];
int main(){
while(cin>>m>>n){
rep(i,1,n) a[i]=read();
memset(dp,0,sizeof dp);
memset(mx,0,sizeof mx);
rep(j,1,m){
mx[m-1]=0;
rep(i,m,n){
mx[i]=max(mx[i-1],dp[i][j-1&1]);
dp[i][j&1]=max(dp[i-1][j&1],mx[i-1])+a[i];
}
}
ll ans=0;
rep(i,m,n) ans=max(ans,dp[i][m&1]);
println(ans);
}
return 0;
}
HDU - 1024 M子段最大和 简单DP的更多相关文章
- HDU 1024 Max Sum Plus Plus 简单DP
这题的意思就是取m个连续的区间,使它们的和最大,下面就是建立状态转移方程 dp[i][j]表示已经有 i 个区间,最后一个区间的末尾是a[j] 那么dp[i][j]=max(dp[i][j-1]+a[ ...
- HDU 1024 Max Sum Plus Plus【DP,最大m子段和】
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1024 题意: 给定序列,给定m,求m个子段的最大和. 分析: 设dp[i][j]为以第j个元素结尾的 ...
- HDU 1024 Max Sum Plus Plus(DP的简单优化)
Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...
- HDU 1024 Max Sum Plus Plus(dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024 题目大意:有多组输入,每组一行整数,开头两个数字m,n,接着有n个数字.要求在这n个数字上,m块 ...
- HDU 1024 A - Max Sum Plus Plus DP + 滚动数组
http://acm.hdu.edu.cn/showproblem.php?pid=1024 刚开始的时候没看懂题目,以为一定要把那n个数字分成m对,然后求m对中和值最大的那对 但是不是,题目说的只是 ...
- HDU 1024 Max Sum Plus Plus【DP】
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we ...
- hdu 2018 母牛的故事(简单dp)
母牛的故事 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
- HDU 1207 汉诺塔II (简单DP)
题意:中文题. 析:在没有第四个柱子时,把 n 个盘子搬到第 3 个柱子时,那么2 ^ n -1次,由于多了一根,不知道搬到第四个柱子多少根时是最优的, 所以 dp[i] 表示搬到第4个柱子 i 个盘 ...
- HDU 5366 The mook jong (简单DP)
题意:ZJiaQ希望把木人桩摆在自家的那个由1*1的地砖铺成的1*n的院子里.由于ZJiaQ是个强迫症,所以他要把一个木人桩正好摆在一个地砖上,由于木人桩手比较长,所以两个木人桩之间地砖必须大于等于两 ...
随机推荐
- CMD指令大全
命令提示符(CMD)是在OS / 2 , Windows CE与Windows NT平台为基础的操作系统(包括Windows 2000和XP中, Vista中,和Server 2003 )下的“MS- ...
- SQL Server CLR全功略之一---CLR介绍和配置
Microsoft SQL Server 现在具备与 Microsoft Windows .NET Framework 的公共语言运行时 (CLR) 组件集成的功能.CLR 为托管代码提供服务,例如跨 ...
- CF1073F Choosing Two Paths
发现从顶点入手不太方便,我们从这个“公共部分最长”开始考虑问题,因为要求这一条公共部分的链最长,可以联想到树的直径,那么本题就是要求一条类似于直径的东西使两个端点除了直径这一条链之外还有不少于两个的儿 ...
- Python3 常用爬虫库的安装
Python3 常用爬虫库的安装 1 简介 Windows下安装Python3常用的爬虫库:requests.selenium.beautifulsoup4.pyquery.pymysql.pymon ...
- (树)根据排序数组或者排序链表重新构建BST树
题目一:给定一个数组,升序数组,将他构建成一个BST 思路:升序数组,这就类似于中序遍历二叉树得出的数组,那么根节点就是在数组中间位置,找到中间位置构建根节点,然后中间位置的左右两侧是根节点的左右子树 ...
- Java Random、ThreadLocalRandom、UUID类中的方法应用(随机数)
1.Random:产生一个伪随机数(通过相同的种子,产生的随机数是相同的): Random r=new Random(); System.out.println(r.nextBoolean()); S ...
- Django项目运行时出现self.status.split(' ',1)[0], self.bytes_sent,ConnectionAbortedError: [WinError 10053] 你的主机中的软件中止了一个已建立的连接。
[02/Nov/2018 09:46:51] "GET /new_industry/category HTTP/1.1" 200 2891792 Traceback (most r ...
- Go语言最佳实践——面向对象
对于接口,应使用组合而非继承的方式扩展: 对于结构体,应定义独立的结构体,而非用嵌套模拟继承. 值接收者和指针接收者: 1.对于不可变类型创建只接受值接收者的方法,而为可变的类型创建接受指针接收者的方 ...
- LOJ#10065. 「一本通 3.1 例 2」北极通讯网络
题目链接:https://loj.ac/problem/10065 题目描述 原题来自:Waterloo University 2002 北极的某区域共有 nnn 座村庄,每座村庄的坐标用一对整数 ( ...
- JMeter的使用——ApacheJMeterTemporaryRootCA.crt的用法
在使用JMeter的时候,启动HTTP代理服务器弹出的那个提示框一直不知道是什么意思,刚刚弄明白了,在JMeter2.1之后,通过JMeter的代理服务器来访问https安全连接的网页的时候,浏览器会 ...