如何确保每个段至少一个数是关键(尤其注意负数情况)

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iin(a) scanf("%d",&a)
#define lin(a) scanf("%lld",&a)
#define din(a) scanf("%lf",&a)
#define s0(a) scanf("%s",a)
#define s1(a) scanf("%s",a+1)
#define print(a) printf("%lld",(ll)a)
#define enter putchar('\n')
#define blank putchar(' ')
#define println(a) printf("%lld\n",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int maxn = 1e6+11;
const int oo = 0x3f3f3f3f;
const double eps = 1e-7;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n,m,a[maxn];
ll dp[maxn][2],mx[maxn];
//dp[i][j]:前i个数分j段的最优解
//dp[i][j]=max(dp[i-1][j],dp[x][j-1])+a[i]
int main(){
while(cin>>m>>n){
rep(i,1,n) a[i]=read();
memset(dp,0,sizeof dp);
int t=1;
rep(j,1,m){
dp[j][j&1]=dp[j-1][j-1&1]+a[j];//对角线初始化
ll mx=dp[j-1][j-1&1];
rep(i,j+1,n){//i-1>=j
mx=max(mx,dp[i-1][j-1&1]);
dp[i][j&1]=max(dp[i-1][j&1],mx)+a[i];
}
}
ll ans=-oo;
rep(i,m,n) ans=max(ans,dp[i][m&1]);
println(ans);
}
return 0;
}

附加错误代码

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iin(a) scanf("%d",&a)
#define lin(a) scanf("%lld",&a)
#define din(a) scanf("%lf",&a)
#define s0(a) scanf("%s",a)
#define s1(a) scanf("%s",a+1)
#define print(a) printf("%lld",(ll)a)
#define enter putchar('\n')
#define blank putchar(' ')
#define println(a) printf("%lld\n",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int maxn = 1e6+11;
const int oo = 0x3f3f3f3f;
const double eps = 1e-7;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n,m,a[maxn];
ll dp[maxn][2],mx[maxn];
int main(){
while(cin>>m>>n){
rep(i,1,n) a[i]=read();
memset(dp,0,sizeof dp);
memset(mx,0,sizeof mx);
rep(j,1,m){
mx[m-1]=0;
rep(i,m,n){
mx[i]=max(mx[i-1],dp[i][j-1&1]);
dp[i][j&1]=max(dp[i-1][j&1],mx[i-1])+a[i];
}
}
ll ans=0;
rep(i,m,n) ans=max(ans,dp[i][m&1]);
println(ans);
}
return 0;
}

HDU - 1024 M子段最大和 简单DP的更多相关文章

  1. HDU 1024 Max Sum Plus Plus 简单DP

    这题的意思就是取m个连续的区间,使它们的和最大,下面就是建立状态转移方程 dp[i][j]表示已经有 i 个区间,最后一个区间的末尾是a[j] 那么dp[i][j]=max(dp[i][j-1]+a[ ...

  2. HDU 1024 Max Sum Plus Plus【DP,最大m子段和】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1024 题意: 给定序列,给定m,求m个子段的最大和. 分析: 设dp[i][j]为以第j个元素结尾的 ...

  3. HDU 1024 Max Sum Plus Plus(DP的简单优化)

    Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...

  4. HDU 1024 Max Sum Plus Plus(dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024 题目大意:有多组输入,每组一行整数,开头两个数字m,n,接着有n个数字.要求在这n个数字上,m块 ...

  5. HDU 1024 A - Max Sum Plus Plus DP + 滚动数组

    http://acm.hdu.edu.cn/showproblem.php?pid=1024 刚开始的时候没看懂题目,以为一定要把那n个数字分成m对,然后求m对中和值最大的那对 但是不是,题目说的只是 ...

  6. HDU 1024 Max Sum Plus Plus【DP】

    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we ...

  7. hdu 2018 母牛的故事(简单dp)

    母牛的故事 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  8. HDU 1207 汉诺塔II (简单DP)

    题意:中文题. 析:在没有第四个柱子时,把 n 个盘子搬到第 3 个柱子时,那么2 ^ n -1次,由于多了一根,不知道搬到第四个柱子多少根时是最优的, 所以 dp[i] 表示搬到第4个柱子 i 个盘 ...

  9. HDU 5366 The mook jong (简单DP)

    题意:ZJiaQ希望把木人桩摆在自家的那个由1*1的地砖铺成的1*n的院子里.由于ZJiaQ是个强迫症,所以他要把一个木人桩正好摆在一个地砖上,由于木人桩手比较长,所以两个木人桩之间地砖必须大于等于两 ...

随机推荐

  1. 686. Repeated String Match 字符串重复后的子字符串查找

    [抄题]: Given two strings A and B, find the minimum number of times A has to be repeated such that B i ...

  2. AutoHotKey 使用ADODB读取Excel 报ADODB.Connection 未找到提供程序,可能未提供

    一.系统环境 操作系统:Win7 64位 英文版 Office:     Office 2010 64位/32位 AutoHotKey:AutoHotKey 1.1.26.01 二.问题现象 安装了A ...

  3. js弹出窗口

    function openModalDialog(url, height, width) { var t_height = 400; var t_width = 600; if (!isNaN(hei ...

  4. while循环 for循环的理解

    不管是while循环还是for循环都隐含着一个if else的结构,就是说,if 条件满足,那么就执行循环体内部的语句,else就做循环体外部的事情. 有一个例子我觉得特别典型,程序内部定义了一个特定 ...

  5. 数字图像处理实验(16):PROJECT 06-03,Color Image Enhancement by Histogram Processing 标签: 图像处理MATLAB 2017

    实验要求: Objective: To know how to implement image enhancement for color images by histogram processing ...

  6. ubuntu在命令行下同步时间

    1. 修改 /etc/timezone的时钟为UTC时钟. echo "Asia/Shanghai" > /etc/timezone 2.修改时区 $sudo cp /usr ...

  7. Luogu 3899 [湖南集训]谈笑风生

    BZOJ 3653权限题. 这题方法很多,但我会的不多…… 给定了$a$,我们考虑讨论$b$的位置: 1.$b$在$a$到根的链上,那么这样子$a$的子树中的每一个结点(除了$a$之外)都是可以成为$ ...

  8. .net 基元类型,引用类型和值类型

    基元类型(primitive type): 编译器直接支持的数据类型称为基元类型(primitive type). string 与 String: 由于C#中的string (一个关键字)直接映射到 ...

  9. 死磕Java之聊聊ArrayList源码(基于JDK1.8)

    工作快一年了,近期打算研究一下JDK的源码,也就因此有了死磕java系列 ArrayList 是一个数组队列,相当于动态数组.与Java中的数组相比,它的容量能动态增长.它继承于AbstractLis ...

  10. 解决Turn your Session into FlushMode.COMMIT/AUTO or remove 'readOnly' marker fro问题

    项目中碰到一个问题,就是将一个map转换成json格式的时候出现错误,最后排查将延迟加载关闭后成功转换,因为数据量较大,于是重新创建了一个对象进行接收. 解决办法是在配置文件中进行配置 虽然解决了这个 ...