题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992

有转移次数、模M余数、方案数三个值,一看就是系数的地方放一个值、指数的地方放一个值、做卷积的次数表示一个值(应该是表示转移次数)。

可以余数和方案数都要求相乘,指数只能相加,怎么办?

然后看题解,原来可以用M的原根的幂来表示余数那个信息!因为原根的几次幂和%M剩余类可以一一对应(除了%M==0!!!),所以用原根的幂表示%M余几,两个余数相乘就变成原根的指数相加了!把该余数对应的原根的指数放在多项式指数的位置,就可以NTT啦!

原根是 1~P-1 次幂的值%P各不相同的,所以可以用 0次项~M-2次项 或者 1次项~M-1 次项来表示。

n的范围要求快速幂。但不是把点值拿出来之后对点值快速幂一番再用点值还原回系数,因为每次卷积那个多项式的长度都要翻倍,所以最后n个点的个数就不够了。

所以要快速幂中每次卷积了一下后把它翻倍的长度手动循环一番变回原长M。这样就行啦!

注意数据范围!!!求的那个 x 不能为0,而给出的元素可以为0!而原根的那些幂都不会为0!(仔细一想,只有0或M的倍数才会%M==0)考虑到那个 x 不会为0、而数列中放入一个0的话值就变成0了,所以给出0以后要认为没有那个元素!!!!!

快速幂时,ans的初值应该像1一样;也就是一个多项式卷积它之后还是该多项式本身。想一想,就是在0次项赋1、其他项赋0即可。

发现>(M<<1)的项的值一定是0;所以循环的时候可以直接减掉1个(M-1)而不用模什么的。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=; const ll mod=;
int n,m,M,pn,s[N],zb[N],pri[N],len,r[N<<];
int a[N<<],ans[N<<];
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='') ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return fx?ret:-ret;
}
void upd(int &x,int md){x>=md?x-=md:;}
int pw(int x,int k,int md)
{int ret=;while(k){if(k&)ret=(ll)ret*x%md;x=(ll)x*x%md;k>>=;}return ret;}
int gtrt()
{
int k=M-,tot=;
for(int i=;i*i<=k;i++)
if(k%i==){pri[++tot]=i;while(k%i==)k/=i;}
if(k>)pri[++tot]=k;
for(int g=;;g++)
{
int i;
for(i=;i<=tot;i++)
if(pw(g,(M-)/pri[i],M)==)break;
if(i>tot)return g;
}
}
void ntt(int *a,bool fx)
{
for(int i=;i<len;i++)
if(i<r[i])swap(a[i],a[r[i]]);
for(int R=;R<=len;R<<=)
{
int m=R>>;
int Wn=pw(,(mod-)/R,mod);
fx?Wn=pw(Wn,mod-,mod):;
for(int i=;i<len;i+=R)
for(int j=,w=;j<m;j++,w=(ll)w*Wn%mod)
{
int tmp=(ll)w*a[i+m+j]%mod;
a[i+m+j]=a[i+j]+mod-tmp; upd(a[i+m+j],mod);
a[i+j]=a[i+j]+tmp; upd(a[i+j],mod);
}
}
if(!fx)return; int inv=pw(len,mod-,mod);
for(int i=;i<len;i++)a[i]=(ll)a[i]*inv%mod;
}
int main()
{
n=rdn(); M=rdn(); pn=rdn(); m=rdn();
for(int i=;i<=m;i++)s[i]=rdn();
int rt=gtrt();
for(int i=,k=rt;i<M;i++,k=k*rt%M) zb[k]=i;
len=;
for(;len<=M<<;len<<=);
for(int i=;i<len;i++)r[i]=(r[i>>]>>)+((i&)?len>>:); for(int i=;i<=m;i++)if(s[i])a[zb[s[i]]]=;////if
ans[]=;///
while(n)
{
ntt(a,);
if(n&)
{
ntt(ans,);
for(int i=;i<len;i++)ans[i]=(ll)ans[i]*a[i]%mod;
ntt(ans,);
for(int i=;i<M;i++)//pos which >(M<<1) surely have no value
ans[i]+=ans[i+M-],ans[i+M-]=,upd(ans[i],mod);
}
for(int i=;i<len;i++)a[i]=(ll)a[i]*a[i]%mod;
ntt(a,);
for(int i=;i<M;i++)
a[i]+=a[i+M-],a[i+M-]=,upd(a[i],mod);
n>>=;
}
printf("%d\n",ans[zb[pn]]);
return ;
}

bzoj 3992 [SDOI2015]序列统计——NTT(循环卷积&&快速幂)的更多相关文章

  1. bzoj 3992 [SDOI2015] 序列统计 —— NTT (循环卷积+快速幂)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992 (学习NTT:https://riteme.github.io/blog/2016-8 ...

  2. BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1155  Solved: 532[Submit][Statu ...

  3. 【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂

    [BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属 ...

  4. bzoj 3992: [SDOI2015]序列统计 NTT+原根

    今天开始学习丧心病狂的多项式qaq......    . code: #include <bits/stdc++.h> #define ll long long #define setIO ...

  5. BZOJ 3992: [SDOI2015]序列统计 快速幂+NTT(离散对数下)

    3992: [SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S ...

  6. BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 466[Submit][Statu ...

  7. [BZOJ 3992][SDOI2015]序列统计

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 2275  Solved: 1090[Submit][Stat ...

  8. bzoj 3992: [SDOI2015]序列统计【原根+生成函数+NTT+快速幂】

    还是没有理解透原根--题目提示其实挺明显的,M是质数,然后1<=x<=M-1 这种计数就容易想到生成函数,但是生成函数是加法,而这里是乘法,所以要想办法变成加法 首先因为0和任何数乘都是0 ...

  9. BZOJ.3992.[SDOI2015]序列统计(DP NTT 原根)

    题目链接 \(Description\) 给定\(n,m,x\)和集合\(S\).求\(\prod_{i=1}^na_i\equiv x\ (mod\ m)\)的方案数.其中\(a_i\in S\). ...

随机推荐

  1. ES6 随记(1)-- let 与 const

    1. const(声明一个只读的常量) 这个是很好理解的,且声明时就必须赋值而不能以后再赋,不然会报错. 而个人认为它最大的用处还是在于 {} 和 [] 上,const 保证了它的内存地址(指针)不变 ...

  2. github使用——如何恢复被删去文件。

    首先git删除文件包括以下几种情况 删除本地文件,但是未添加到暂存区: 删除本地文件,并且把删除操作添加到了暂存区: 把暂存区的操作提交到了本地git库: 把本地git库的删除记录推送到了远程服务器g ...

  3. C++字符串操作库函数

    #include <bits/stdc++.h> using namespace std; int main() { ]="; ]="abcdefg"; ]= ...

  4. Java中的UDP协议编程

    一. UDP协议定义   UDP协议的全称是用户数据报,在网络中它与TCP协议一样用于处理数据包.在OSI模型中,在第四层——传输层,处于IP协议的上一层.UDP有不提供数据报分组.组装和不能对数据包 ...

  5. 【BZOJ2818】Gcd (欧拉函数)

    网址:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 一道数论裸题,欧拉函数前缀和搞一下就行了. 小于n的gcd为p的无序数对,就是phi(1 ...

  6. mysql基础(5)-关联(mysql+pandas)

    表关联类型 内连接: 仅显示满足条件的行 From T1,T2 where T1.ID=T2.ID From T1 inner join T2 ON T1.ID=T2.ID 左连接: 显示左表T1中的 ...

  7. 简学Python第五章__模块介绍,常用内置模块

    Python第五章__模块介绍,常用内置模块 欢迎加入Linux_Python学习群  群号:478616847 目录: 模块与导入介绍 包的介绍 time &datetime模块 rando ...

  8. js中对象的类型

    js中的类型分为三种,"内部对象"."宿主对象"."自定义对象" 1."内部对象"有Date.Function.Arra ...

  9. JavaWeb -- Jsp中的 EL表达式

    lEL 全名为Expression Language.EL主要作用: l获取数据: •EL表达式主要用于替换JSP页面中的脚本表达式,以从各种类型的web域 中检索java对象.获取数据.(某个web ...

  10. numpy nonzero与isnan

    nonzero 直接看例子: In [83]: x = np.array([[1,0,0], [0,2,0], [1,1,0]]) In [84]: x.shape Out[84]: (3L, 3L) ...