题目大意:
  一个$n(n\le100)$个点的树,将一些点染成黑点,求满足每个点到最近黑点的距离$\le k(k\le\min(20,n-1))$的方案数。

思路:
  树形DP。
  用$f[i][j]$表示$i$的子树中离$i$最近黑点的距离为$j$,且距离超过$j$的点都被满足的方案数。转移时新建一个临时数组$tmp$保存转移后的$f[x]$。设$y$是$x$的子结点,枚举$f[x][i]$和$f[y][j]$,转移如下:
    1.若$i+j\le2k$,则此时$\min(i,j+1)\le k$,对于长度为$i+j+1$的链上的所有点都可以找到一边距离$\le k$,因此状态合并以后是合法状态,转移$tmp[\min(i,j+1)]+=f[x][i]\times f[y][j]$;
    2.若$i+j>2k$,则此时$\max(i,j+1)>k$,链上肯定会存在一些点两边都够不到,转移$tmp[\max(i,j+1)]+=f[x][i]\times f[y][j]$。
  初始状态$f[x][0]=1$,表示不考虑子树内的情况,选择自己的方案数为$1$;$f[x][k+1]=1$,表示自己本身不满足,但子结点都被满足的情况,主要是方便转移。
  答案为$\sum_{i<=k}f[root][i]$。
  时间复杂度$O(nk^2)$。

 #include<cstdio>
#include<cctype>
#include<algorithm>
#include<forward_list>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=,K=,mod=1e9+;
int k,f[N][K],tmp[K];
std::forward_list<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_front(v);
e[v].push_front(u);
}
void dfs(const int &x,const int &par) {
f[x][]=f[x][k+]=;
for(int &y:e[x]) {
if(y==par) continue;
dfs(y,x);
std::fill(&tmp[],&tmp[k*]+,);
for(register int i=;i<=k*;i++) {
for(register int j=;j<=k*;j++) {
(tmp[i+j<=k*?std::min(i,j+):std::max(i,j+)]+=(int64)f[x][i]*f[y][j]%mod)%=mod;
}
}
std::copy(&tmp[],&tmp[k*]+,f[x]);
}
}
int main() {
const int n=getint();k=getint();
for(register int i=;i<n;i++) {
add_edge(getint(),getint());
}
dfs(,);
int ans=;
for(register int i=;i<=k;i++) {
(ans+=f[][i])%=mod;
}
printf("%d\n",ans);
return ;
}

[CF735E/736C]Ostap and Tree的更多相关文章

  1. [Ccodeforces 736C] Ostap and Tree - 树形DP

    给定一个n个点的树,把其中一些点涂成黑色,使得对于每个点,其最近的黑点的距离不超过K. 树形DP. 设置状态f[i][j]: 当j <= K时: 合法状态,表示i的子树中到根的最近黑点距离为j的 ...

  2. Codeforces Round #382 (Div. 2)E. Ostap and Tree

    E. Ostap and Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  3. Codeforces 735 E Ostap and Tree

    Discription Ostap already settled down in Rio de Janiero suburb and started to grow a tree in his ga ...

  4. CF735E Ostap and Tree

    比较毒瘤的树形DP,子状态难想.这是主要是搬运一篇题解. 用\(f[i][j]\)表示\(i\)的子树中离\(i\)最近黑点的距离为\(j\),且距离超过\(j\)的点都被满足的方案数.转移时新建一个 ...

  5. Codeforces Round #382 (Div. 2) 继续python作死 含树形DP

    A - Ostap and Grasshopper zz题能不能跳到  每次只能跳K步 不能跳到# 问能不能T-G  随便跳跳就可以了  第一次居然跳越界0.0  傻子哦  WA1 n,k = map ...

  6. CF上部分树形DP练习题

    本次 5 道题均来自Codeforce 关于树形DP的算法讲解:Here 791D. Bear and Tree Jumps 如果小熊每次能跳跃的距离为1,那么问题变为求树上任意两点之间距离之和. 对 ...

  7. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  8. SAP CRM 树视图(TREE VIEW)

    树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...

  9. 无限分级和tree结构数据增删改【提供Demo下载】

    无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...

随机推荐

  1. B. Minimum Ternary String (这个B有点狠)

    B. Minimum Ternary String time limit per test 1 second memory limit per test 256 megabytes input sta ...

  2. 怎么利用idea自带的工具,不需要 重启tomcat或则其他服务,js代码自动生效

    idea中有一个工具:可以直接upload,能让你修改的界面直接可以看到,不需要重启服务. 依次点击的按钮如下: 点击进入的界面这个填的只是一个示例,在各位的电脑上肯定不行,大家依据实际情况填写.

  3. ServletContext 接口读取配置文件要注意的路径问题

    在建立一个maven项目时,我们通常把一些文件直接放在resource下面,在ServletContext中有getResource(String path)和getResourceAsStream( ...

  4. 【poj3693-重复次数最多的连续重复子串】后缀数组

    题意:给定一个串,长度<=10^5,求它重复次数最多的连续重复子串(输出字典序最小的那个). 例如ccabcabc,答案就是abcabc 一开始没想清楚,结果调了好久. 原理: 按照L划分,因为 ...

  5. szoj461【四校联考0430】挑战

    传送门:(涉及版权忽略) [题解] 我们发现n的范围很小,提示我们可以折半,然后我们就会了O(T2^(n/2)*n)的做法,然而会T. 考虑如何优化.直接排序会多一个log(2^(n/2))也就是n, ...

  6. 1211笔记关于//modal//更改窗口的根控制器//数据存取//Plist属性列表//-“沙盒机制”//plis属性列表//偏好设置//归档普通对象//联系人数据存储//协议与回调函数

    一.利用Modal形式展示控制器 1.如何展示// vc就是要展示的新控制器[self presentViewController:vc animated:YES completion:^{    N ...

  7. [bzoj3524==bzoj2223][Poi2014]Couriers/[Coci 2009]PATULJCI——主席树+权值线段树

    题目大意 给定一个大小为n,每个数的大小均在[1,c]之间的数列,你需要回答m个询问,其中第i个询问形如\((l_i, r_i)\),你需要回答是否存在一个数使得它在区间\([l_i,r_i]\)中出 ...

  8. Linux 工作站安全加固规范

    目标受众 这是一套 Linux 基金会为其系统管理员提供的推荐规范. 这个文档用于帮助那些使用 Linux 工作站来访问和管理项目的 IT 设施的系统管理员团队. 如果你的系统管理员是远程员工,你也许 ...

  9. 常见协议基础知识总结--FTP协议

    FTP协议是一种基于客户端和服务器的文件传输协议,属于应用层协议,基于传输层的TCP协议: FTP主要分成主动模式和被动模式两种传输方式, 方式是相对服务器而言的,服务器主动发起数据连接即主动方式,使 ...

  10. 两个kernel.org国内镜像

    两个kernel.org国内镜像 https://mirror.tuna.tsinghua.edu.cn/kernel/v4.x/testing/ http://mirror.bjtu.edu.cn/ ...