题目大意:
  一个$n(n\le100)$个点的树,将一些点染成黑点,求满足每个点到最近黑点的距离$\le k(k\le\min(20,n-1))$的方案数。

思路:
  树形DP。
  用$f[i][j]$表示$i$的子树中离$i$最近黑点的距离为$j$,且距离超过$j$的点都被满足的方案数。转移时新建一个临时数组$tmp$保存转移后的$f[x]$。设$y$是$x$的子结点,枚举$f[x][i]$和$f[y][j]$,转移如下:
    1.若$i+j\le2k$,则此时$\min(i,j+1)\le k$,对于长度为$i+j+1$的链上的所有点都可以找到一边距离$\le k$,因此状态合并以后是合法状态,转移$tmp[\min(i,j+1)]+=f[x][i]\times f[y][j]$;
    2.若$i+j>2k$,则此时$\max(i,j+1)>k$,链上肯定会存在一些点两边都够不到,转移$tmp[\max(i,j+1)]+=f[x][i]\times f[y][j]$。
  初始状态$f[x][0]=1$,表示不考虑子树内的情况,选择自己的方案数为$1$;$f[x][k+1]=1$,表示自己本身不满足,但子结点都被满足的情况,主要是方便转移。
  答案为$\sum_{i<=k}f[root][i]$。
  时间复杂度$O(nk^2)$。

 #include<cstdio>
#include<cctype>
#include<algorithm>
#include<forward_list>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=,K=,mod=1e9+;
int k,f[N][K],tmp[K];
std::forward_list<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_front(v);
e[v].push_front(u);
}
void dfs(const int &x,const int &par) {
f[x][]=f[x][k+]=;
for(int &y:e[x]) {
if(y==par) continue;
dfs(y,x);
std::fill(&tmp[],&tmp[k*]+,);
for(register int i=;i<=k*;i++) {
for(register int j=;j<=k*;j++) {
(tmp[i+j<=k*?std::min(i,j+):std::max(i,j+)]+=(int64)f[x][i]*f[y][j]%mod)%=mod;
}
}
std::copy(&tmp[],&tmp[k*]+,f[x]);
}
}
int main() {
const int n=getint();k=getint();
for(register int i=;i<n;i++) {
add_edge(getint(),getint());
}
dfs(,);
int ans=;
for(register int i=;i<=k;i++) {
(ans+=f[][i])%=mod;
}
printf("%d\n",ans);
return ;
}

[CF735E/736C]Ostap and Tree的更多相关文章

  1. [Ccodeforces 736C] Ostap and Tree - 树形DP

    给定一个n个点的树,把其中一些点涂成黑色,使得对于每个点,其最近的黑点的距离不超过K. 树形DP. 设置状态f[i][j]: 当j <= K时: 合法状态,表示i的子树中到根的最近黑点距离为j的 ...

  2. Codeforces Round #382 (Div. 2)E. Ostap and Tree

    E. Ostap and Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  3. Codeforces 735 E Ostap and Tree

    Discription Ostap already settled down in Rio de Janiero suburb and started to grow a tree in his ga ...

  4. CF735E Ostap and Tree

    比较毒瘤的树形DP,子状态难想.这是主要是搬运一篇题解. 用\(f[i][j]\)表示\(i\)的子树中离\(i\)最近黑点的距离为\(j\),且距离超过\(j\)的点都被满足的方案数.转移时新建一个 ...

  5. Codeforces Round #382 (Div. 2) 继续python作死 含树形DP

    A - Ostap and Grasshopper zz题能不能跳到  每次只能跳K步 不能跳到# 问能不能T-G  随便跳跳就可以了  第一次居然跳越界0.0  傻子哦  WA1 n,k = map ...

  6. CF上部分树形DP练习题

    本次 5 道题均来自Codeforce 关于树形DP的算法讲解:Here 791D. Bear and Tree Jumps 如果小熊每次能跳跃的距离为1,那么问题变为求树上任意两点之间距离之和. 对 ...

  7. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  8. SAP CRM 树视图(TREE VIEW)

    树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...

  9. 无限分级和tree结构数据增删改【提供Demo下载】

    无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...

随机推荐

  1. Codeforces Round #520 (Div. 2) B. Math

    B. Math time limit per test:1 second memory limit per test:256 megabytes Description: JATC's math te ...

  2. fastjson对json操作

    fastjson对json字符串JSONObject和JSONArray互相转换操作示例  fastjson的方法: Fastjson API入口类是com.alibaba.fastjson.JSON ...

  3. mysql删除id最小的条目

    DELETE FROM 表1 WHERE Mid in (select Mid from (SELECT Min(Mid) Mid FROM 表1 c1) t1);

  4. 自己实现的JDBC工具类

    最近做了个后台应用程序,刚开始用Spring+iBatis来做的,后来因为种种原因,不让用Spring.iBatis以及一些开源的工具包.   于是用JDBC重写了原来的Service实现,项目做完了 ...

  5. 使用Word2010发布博客文章

    发布博客可以直接在web页面上面编辑,也可以使用客户端编辑,其中客户端支持windows live writer以及word本身的发布博客功能.个人试用后倾向于使用word发布博客文章. 下面的内容转 ...

  6. svn“Previous operation has not finished; run 'cleanup' if it was interrupted“ 或者不能cleanup,或者提示空目录 报错的解决方法

    参考了文档: http://blog.csdn.net/superch0054/article/details/38668017 今天碰到了个郁闷的问题,svn执行clean up命令时报错“Prev ...

  7. css划斜线

    http://stackoverflow.com/questions/18012420/draw-diagonal-lines-in-div-background-with-css

  8. Kuangbin 带你飞专题十一 网络流题解 及模版 及上下界网络流等问题

    首先是几份模版 最大流:虽然EK很慢但是优势就是短.求最小割的时候可以根据增广时的a数组来判断哪些边是割边.然而SAP的最大流版我只会套版,并不知道该如何找到这个割边.在尝试的时候发现了一些问题.所以 ...

  9. python排序sorted与sort比较

    Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列. sorted(iterable,key=None,revers ...

  10. django 分页django-pure-pagination(zz)

    虽然django自带了一个paginator,但不是很方便,我们使用django-pure-pagination github地址https://github.com/jamespacileo/dja ...