给定一个01?串,对所有len询问是否存在一种填法使存在长度为len的border。

首先有个套路的性质:对于一个长度为len的border,这个字符串一定有长度为n-len的循环节(最后可以不完整)。

逆推得到,如果有一个0位置和一个1位置之差为len,则所有len的因数k的n-k都不可能成为border。

先将b翻转,作差卷起来,然后$O(n\log n)$枚举倍数即可。

$A(x)=x^{n-1}A(\frac 1x)$是作差卷积的本质。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,mod=,G=;
int n,len,l,a[N],b[N],rev[N],lg[N];
char s[N]; int ksm(int a,int b){
int res=;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} void NTT(int a[],int n,int f){
for (int i=; i<n; i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=; i<n; i<<=){
int wn=ksm(G,(f==) ? (mod-)/(i<<) : (mod-)-(mod-)/(i<<));
for (int p=i<<,j=; j<n; j+=p)
for (int w=,k=; k<i; k++,w=1ll*w*wn%mod){
int x=a[j+k],y=1ll*w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod; a[i+j+k]=(x-y+mod)%mod;
}
}
if (f==) return;
int inv=ksm(n,mod-);
for (int i=; i<n; i++) a[i]=1ll*a[i]*inv%mod;
} int main(){
freopen("pkub.in","r",stdin);
freopen("pkub.out","w",stdout);
scanf("%s",s); n=strlen(s);
for (len=; len<=(n<<); len<<=) l++;
for (int i=; i<len; i++) rev[i]=(rev[i>>]>>)|((i&)<<(l-));
for (int i=; i<n; i++) a[i]=s[i]=='',b[i]=s[n-i-]=='';
NTT(a,len,); NTT(b,len,);
for (int i=; i<len; i++) a[i]=1ll*a[i]*b[i]%mod;
NTT(a,len,-);
long long ans=1ll*n*n;
for (int i=; i<n; i++){
int f=;
for (int j=i; j<n; j+=i) if (a[n-j-]|a[n+j-]) { f=; break; }
if (f) ans^=1ll*(n-i)*(n-i);
}
printf("%lld\n",ans);
return ;
}

[PKUSC2018]神仙的游戏(FFT)的更多相关文章

  1. BZOJ5372: [Pkusc2018]神仙的游戏

    BZOJ5372: [Pkusc2018]神仙的游戏 https://lydsy.com/JudgeOnline/problem.php?id=5372 分析: 如果\(len\)为\(border\ ...

  2. BZOJ5372: PKUSC2018神仙的游戏

    传送门 Sol 自己还是太 \(naive\) 了,上来就构造多项式和通配符直接匹配,然后遇到 \(border\) 相交的时候就 \(gg\) 了 神仙的游戏蒟蒻还是玩不来 一个小小的性质: 存在长 ...

  3. LOJ6436 [PKUSC2018] 神仙的游戏 【FFT】

    题目分析: 题目要求前后缀相同,把串反过来之后是一个很明显的卷积的形式.这样我们可以完成初步判断(即可以知道哪些必然不行). 然后考虑一下虽然卷积结果成立,但是存在问号冲突的情况. 箭头之间应当不存在 ...

  4. bzoj 5372: [Pkusc2018]神仙的游戏

    Description 小D和小H是两位神仙.他们经常在一起玩神仙才会玩的一些游戏,比如"口算一个4位数是不是完全平方数". 今天他们发现了一种新的游戏:首先称s长度为len的前缀 ...

  5. loj 6436 PKUSC2018 神仙的游戏

    传送门 好妙蛙 即串\(s\)长度为\(n\)首先考虑如果一个长度为\(len\)的\(border\)存在,当且仅当对所有\(i\in[1,len],s[i]=s[n-len+i]\),也就是所有模 ...

  6. [PKUSC2018]神仙的游戏

    题目 画一画就会发现一些奇诡的性质 首先如果\(len\)为一个\(\operatorname{border}\),那么必然对于\(\forall i\in [1,len]\),都会有\(s_i=s_ ...

  7. BZOJ5372 PKUSC2018神仙的游戏(NTT)

    首先有一个想法,翻转串后直接卷积看有没有0匹配上1.但这是必要而不充分的因为在原串和翻转串中?不能同时取两个值. 先有一些结论: 如果s中长度为len的前缀是border,那么其存在|s|-len的循 ...

  8. [LOJ6436][PKUSC2018]神仙的游戏

    loj description 给你一个只有01和?的字符串,问你是否存在一种把?改成01的方案使串存在一个长度为\(1-n\)的\(border\).\(n\le5\times10^5\) sol ...

  9. LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)

    题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...

随机推荐

  1. 【模拟赛·polyline】

    Input file: polyline.in Output file: polyline.out Time limit: 1s Memory limit: 128M 有若⼲个类似于下⾯的函数: 定义 ...

  2. [USACO Hol10] 臭气弹 图上期望概率dp 高斯

    记住一开始和后来的经过是两个事件因此概率可以大于一 #include<cstdio> #include<iostream> #include<cstdlib> #i ...

  3. 桥接物理网卡,pipwork指定ip,外网连接,研究salt+docker

    1.桥接物理网卡: 首先下载工具: yum -y install --enablerepo=epel bridge-utils 停止服务: 983 systemctl stop docker 删除do ...

  4. C# Producer Consumer (生产者消费者模式)demo

    第一套代码将producer Consumer的逻辑写到from类里了,方便在demo的显示界面动态显示模拟生产和消费的过程.     第二套代码将producer Consumer的逻辑单独写到一个 ...

  5. dbcp重连问题排查

    转载自:http://lc87624.iteye.com/blog/1734089 使用数据库连接池时,免不了会遇到断网.数据库挂掉等异常状况,当网络或数据库恢复时,若无法恢复连接池中的连接,那必然会 ...

  6. 【数据结构】bzoj1455罗马游戏

    Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那些得分很低的人嗤之以鼻 ...

  7. 【BZOJ2663】灵魂宝石 [二分]

    灵魂宝石 Time Limit: 5 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description “作为你们本体的灵魂,为了能够更好的 ...

  8. codevs1163访问艺术馆 树形dp

    算裸的树形dp吧 回来复习一波 #include<cstdio> #include<cstring> #include<algorithm> #include< ...

  9. MongoDB 聚合(管道与表达式)

    MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果.有点类似sql语句中的 count(*). aggregate() 方法 MongoDB中 ...

  10. django+apache部署

    参考:http://blog.csdn.net/rongyongfeikai2/article/details/13093555/ 参考:http://blog.csdn.net/yingmutong ...