处理仙人掌 ---> 首先建立出圆方树。则如果询问的两点 \(lca\) 为圆点,直接计算即可, 若 \(lca\) 为方点,则需要额外判断是走环的哪一侧(此时与两个点在环上的相对位置有关。)

#include <bits/stdc++.h>
using namespace std;
#define maxn 200000
#define int long long
#define CNST 20
int n, m, Q, gra[maxn][CNST];
int N, dfn[maxn], low[maxn], timer;
int S[maxn], dis[maxn], bk[maxn];
int dep[maxn], fa[maxn], id[maxn];
int A, B; struct edge
{
int cnp, head[maxn], to[maxn], last[maxn], w[maxn];
edge() { cnp = ; }
void add(int u, int v, int ww)
{
to[cnp] = v, last[cnp] = head[u], w[cnp] = ww, head[u] = cnp ++;
to[cnp] = u, last[cnp] = head[v], w[cnp] = ww, head[v] = cnp ++;
}
}E1, E2; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void Solve(int u, int v, int w)
{
N ++; int pre = w, ID = ;
bool flag = ;
for(int i = v; i != fa[u]; i = fa[i])
{
S[i] = pre; pre += bk[i];
id[i] = ++ ID;
}
S[N] = S[u]; S[u] = ;
for(int i = v; i != fa[u]; i = fa[i])
E2.add(N, i, min(S[i], S[N] - S[i]));
} void Tarjan(int u)
{
dfn[u] = low[u] = ++ timer;
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i]; if(v == fa[u]) continue;
if(!dfn[v]) bk[v] = E1.w[i], fa[v] = u, Tarjan(v), low[u] = min(low[u], low[v]);
else low[u] = min(low[u], dfn[v]);
if(low[v] > dfn[u]) E2.add(u, v, E1.w[i]);
}
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i];
if(fa[v] != u && dfn[v] > dfn[u]) Solve(u, v, E1.w[i]);
}
} void dfs(int u, int ff)
{
gra[u][] = ff; dep[u] = dep[ff] + ;
for(int i = ; i < CNST; i ++) gra[u][i] = gra[gra[u][i - ]][i - ];
for(int i = E2.head[u]; i; i = E2.last[i])
{
int v = E2.to[i];
if(v != ff)
bk[v] = E2.w[i], dis[v] = dis[u] + E2.w[i], dfs(v, u);
}
} int LCA(int x, int y)
{
if(dep[x] < dep[y]) swap(x, y);
for(int i = CNST - ; ~i; i --)
if(dep[gra[x][i]] >= dep[y]) x = gra[x][i];
for(int i = CNST - ; ~i; i --)
if(gra[x][i] != gra[y][i]) x = gra[x][i], y = gra[y][i];
A = x, B = y;
return x == y ? x : gra[x][];
} signed main()
{
n = read(), m = read(), Q = read();
for(int i = ; i <= m; i ++)
{
int u = read(), v = read(), w = read();
E1.add(u, v, w);
}
N = n; Tarjan(); dfs(, );
while(Q --)
{
int u = read(), v = read();
int lca = LCA(u, v);
if(lca <= n) printf("%lld\n", dis[u] + dis[v] - * dis[lca]);
else
{
int ans = dis[u] + dis[v] - dis[A] - dis[B];
if(id[A] <= id[B]) swap(A, B);
ans += min(S[A] - S[B], S[lca] - S[A] + S[B]);
printf("%lld\n", ans);
}
}
return ;
}

【题解】Bzoj2125最短路的更多相关文章

  1. [BZOJ2125]最短路(圆方树DP)

    题意:仙人掌图最短路. 算法:圆方树DP,$O(n\log n+Q\log n)$ 首先建出仙人掌圆方树(与点双圆方树的区别在于直接连割边,也就是存在圆圆边),然后考虑点u-v的最短路径,显然就是:在 ...

  2. BZOJ2125 最短路 【仙人掌最短路】

    题目 给一个N个点M条边的连通无向图,满足每条边最多属于一个环,有Q组询问,每次询问两点之间的最短路径. 输入格式 输入的第一行包含三个整数,分别表示N和M和Q 下接M行,每行三个整数v,u,w表示一 ...

  3. [题解](次短路)luogu_P2865路障(未)

    好像是个不需要vis数组的次短路,跑到收敛,然而给我脑袋弄炸了......到现在还没懂.......究竟次短路应该怎么求a...... 抄题解: #include<bits/stdc++.h&g ...

  4. bzoj2125 最短路

    Description 给一个N个点M条边的连通无向图,满足每条边最多属于一个环,有Q组询问,每次询问两点之间的最短路径. Input 输入的第一行包含三个整数,分别表示N和M和Q 下接M行,每行三个 ...

  5. BZOJ2125 最短路 圆方树、倍增

    传送门 对仙人掌建立圆方树,然后对边定权 对于圆点和圆点之间的边,是原来仙人掌上的桥,边权保持不变 对于圆点和方点之间的边,将圆方树看做以一个圆点为根的有根树之后,一个方点的父亲一定是一个圆点.对于这 ...

  6. 2018.07.25 bzoj2125: 最短路(圆方树+倍增)

    传送门 人生的第一道仙人掌. 这道题求是仙人掌上的最短路. 先建出圆方树,然后用倍增跑最短路,当lca" role="presentation" style=" ...

  7. [题解](最短路)luogu_P5122 Fine Dining

    首先理解这里的美味值相当于给你更多时间让你经过这个草垛的, 也就是在经过草垛时可以给你的时间减少w[i],这样能否比最短路不慢 然而我们并不容易知道怎么走才是最好的,所以要想办法避免找这个方案 我们新 ...

  8. [题解](最短路(树))luogu_P5201_short cut

    一开始想着最短路时统计一下到每个点的牛数量,但是没写出来 建最短路树是个不错的想法,正常跑一次最短路,枚举每个点的前驱,如果d[y]==d[x]+w就是树上的一条边,优先连编号小的, 建好树以后做一次 ...

  9. bzoj2125 最短路——仙人掌两点间距离

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2125 仙人掌!模仿 lyd 的代码写的,也算是努力理解了: 主要分成 lca 在环上和不在环 ...

随机推荐

  1. mysql 使用 FIND_IN_SET 来查询数据

    mysql中find_in_set函数很有意思,它的功能是查找以英文逗号隔开的值,我们可以将数据存储类似为1,2,3,4格式.今天我们就来看看在thinkphp中怎样正确地使用find_in_set函 ...

  2. elasticsearch搜索引擎搭建

    在该路径下,运行elasticsearch.bat该命令,后面访问127.0.0.1:9200 出现如下界面说明启动成功 elasticsearch-head操作elasticsearch的图形界面, ...

  3. 嵌入式框架Zorb Framework搭建六:定时器的实现

    我是卓波,我是一名嵌入式工程师,我万万没想到我会在这里跟大家吹牛皮. 嵌入式框架Zorb Framework搭建过程 嵌入式框架Zorb Framework搭建一:嵌入式环境搭建.调试输出和建立时间系 ...

  4. 解决 Python2 和 Python3 的共存问题

    首先安装两种版本的Python 进入系统属性更改环境变量 将两个版本的安装路径找出. 添加至PATH中,变量之间用分号隔开. D:\Python36\Scripts\;D:\Python36\;D:\ ...

  5. php curl 登陆百度贴吧(经历记录)

    这两天,因为公司需要,所以研究了一下百度文库的登陆方案.因为账号是购买的,只有一部分cookie值,所以不能通过正常的渠道登陆,所以只有通过curl模拟直接进行后台登陆.那么,问题来了.按照人家说的, ...

  6. 从C到C++ (2)

    从C到C++ (2) 一.    C++中增加了作用域标示符 :: 1.     用于对局部变量同名的全局变量进行访问. 2.     用于表示类成员. 二.    new.delete运算符 1.  ...

  7. luogu4172 [WC2006]水管局长

    就是用 lct 维护最小生成树 ref #include <algorithm> #include <iostream> #include <cstdio> #in ...

  8. autofac无法解析一例

    在asp.net mvc分项目开发中,如果类库位于其他的项目中,则必须在global中对其他项目的类库进行注册,否则会报“ None of the constructors found with 'A ...

  9. 《python核心编程第二版》第4章习题

    4–1. Python 对象.与所有 Python 对象有关的三个属性是什么?请简单的

  10. 09-Mysql数据库----外键的变种

    本节重点: 如何找出两张表之间的关系 表的三种关系 一.介绍 因为有foreign key的约束,使得两张表形成了三种了关系: 多对一 多对多 一对一 二.重点理解如果找出两张表之间的关系 分析步骤: ...