题目链接

分析:

要求的是小于$n$的和$n$不互质的数字之和...那么我们先求出和$n$互质的数字之和,然后减一减就好了...

$\sum _{i=1}^{n} i[gcd(i,n)==1]=\left \lfloor \frac{n\phi(n)}{2} \right \rfloor$

考虑$gcd(n,i)=1$,那么必然有$gcd(n,n-i)=1$,然后发现如果把$gcd(n,i)=1$和$gcd(n,n-i)=1$凑到一起会出现$n$,这样的有$\left \lfloor \frac{\phi(n)}{2} \right \rfloor$对...

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
//by NeighThorn
using namespace std; const int mod=1e9+7; int n,ans; inline int phi(int n){
int x=n,m=sqrt(n);
for(int i=2;i<=m;i++)
if(n%i==0){
x=1LL*x/i*(i-1)%mod;
while(n%i==0)
n/=i;
}
if(n>1) x=x/n*(n-1)%mod;
return x;
} signed main(void){
while(scanf("%d",&n)&&n){
ans=(1LL*n*(n-1)/2)%mod;
ans-=(1LL*phi(n)*n/2)%mod;
if(ans<0) ans+=mod;
printf("%d\n",ans);
}
return 0;
}

  


By NeighThorn

HDOJ 3501 Calculation 2的更多相关文章

  1. HDU 3501 Calculation 2(欧拉函数)

    Calculation 2 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submi ...

  2. HDU 3501 Calculation 2------欧拉函数变形

    Calculation 2 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  3. HDU——T 3501 Calculation 2

    http://acm.hdu.edu.cn/showproblem.php?pid=3501 Time Limit: 2000/1000 MS (Java/Others)    Memory Limi ...

  4. hdoj 3501

    Problem Description Given a positive integer N, your task is to calculate the sum of the positive in ...

  5. HDU 3501 Calculation 2 (欧拉函数)

    题目链接 题意 : 求小于n的数中与n不互质的所有数字之和. 思路 : 欧拉函数求的是小于等于n的数中与n互质的数个数,这个题的话,先把所有的数字之和求出来,再减掉欧拉函数中所有质数之和(即为eula ...

  6. hdu 3501 Calculation 2 (欧拉函数)

    题目 题意:求小于n并且 和n不互质的数的总和. 思路:求小于n并且与n互质的数的和为:n*phi[n]/2 . 若a和n互质,n-a必定也和n互质(a<n).也就是说num必定为偶数.其中互质 ...

  7. HDU 3501 Calculation 2

    题目大意:求小于n的与n不互质的数的和. 题解:首先欧拉函数可以求出小于n的与n互质的数的个数,然后我们可以发现这样一个性质,当x与n互质时,n-x与n互质,那么所有小于n与n互质的数总是可以两两配对 ...

  8. HDU 3501 Calculation 2 ——Dirichlet积

    [题目分析] 卷积太有趣了. 最终得出结论,互质数和为n*phi(n)/2即可. 计算(n*(n+1)/2-n-n*phi(n)/2)%md,用反正法即可证明. [代码] #include <c ...

  9. 题解报告:hdu 3501 Calculation 2 (欧拉函数的扩展)

    Description Given a positive integer N, your task is to calculate the sum of the positive integers l ...

随机推荐

  1. 1321. [ZJOI2012] 灾难

    1321. [ZJOI2012] 灾难 ★★☆   输入文件:catas.in   输出文件:catas.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 阿米巴是小强的 ...

  2. js面向对象过程

    var a = new  b(); 等价于 var a={}; a=b.prototype; b.call(a);

  3. Qt BarChart实践

    按照帮助文档编写 运行截图 上代码 #include "widget.h" #include "ui_widget.h" Widget::Widget(QWid ...

  4. Qt Qwdget 汽车仪表知识点拆解6 自定义控件

    先贴上效果图,注意,没有写逻辑,都是乱动的 这里说一下控件自定义 图中标出的部分都是自定义的控件 这里如果我们有批量类似的功能,就可以使用自定义控件的方式,这里我已下面的自定义控件说一下,上面的在上一 ...

  5. Python 3基础教程29-os模块

    本文介绍os模块,主要是介绍一些文件的相关操作. 你还有其他方法去查看os 1. help() 然后输入os 2. Python接口文档,前面提到的用浏览器打开的,os文件路径为:C:\Users\A ...

  6. 第二篇 Postman的高阶使用之配置全局变量及局部变量的调用及设置方法(手动方法)

    第五篇主要写了关于postman的基本使用,重点是如果发送json请求,为什么要将发送json请求呢, 一是目前大多数的请求已经倾向于发送json格式,二是本人太懒了,不想一个字段一个字段的添加到参数 ...

  7. phpStoram破解方法

  8. lintcode-133-最长单词

    133-最长单词 给一个词典,找出其中所有最长的单词. 样例 在词典 { "dog", "google", "facebook", &quo ...

  9. C++关于堆的函数

    建立堆 make_heap(_First, _Last, _Comp) 默认是建立最大堆的.对int类型,可以在第三个参数传入greater<int>()得到最小堆.   在堆中添加数据 ...

  10. systemtap get var of the tracepoing

    kernel.trace("sched_switch") func:func:perf_trace_sched_stat_template get the function in ...