Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
任意门:http://codeforces.com/contest/689/problem/E
E. Mike and Geometry Problem
3 seconds
256 megabytes
standard input
standard output
Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's define f([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that
). You are given two integers nand k and n closed intervals [li, ri] on OX axis and you have to find:

In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.
As the answer may be very large, output it modulo 1000000007 (109 + 7).
Mike can't solve this problem so he needs your help. You will help him, won't you?
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.
Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.
Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.
3 2
1 2
1 3
2 3
5
3 3
1 3
1 3
1 3
3
3 1
1 2
2 3
3 4
6
In the first example:
;
;
.
So the answer is 2 + 1 + 2 = 5.
大概题意:
有 N 个区间, 从其中取 K 个区间。所以有 C(N, K)种组合, 求每种组合区间交集长度的总和。
解题思路:
丢开区间的角度,从每个结点的角度来看,其实每个结点的贡献是 C(cnt, K) cnt 为该结点出现的次数, 所以只要O(N)扫一遍统计每个结点的贡献就是答案。
思路清晰,但考虑到数据的规模,这里需要注意和需要用到两个技巧:
一是离散化,这里STL里的 vector 和 pair 结合用,结合区间加法的思想进行离散化。
二是求组合数时 除数太大,考虑到精度问题需要用逆元来计算。
AC code:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+;
const int mod = 1e9+;
long long fac[maxn]; long long qpow(long long a,long long b) //快速幂
{
long long ans=;a%=mod;
for(long long i=b;i;i>>=,a=a*a%mod)
if(i&)ans=ans*a%mod;
return ans;
} long long C(long long n,long long m) //计算组合数
{
if(m>n||m<)return ;
long long s1=fac[n], s2=fac[n-m]*fac[m]%mod; //除数太大,逆元处理
return s1*qpow(s2,mod-)%mod;
}
int n,k;
int l[maxn],r[maxn]; //左端点, 右端点
int main()
{
fac[]=;
for(int i=;i<maxn;i++) //预处理全排列
fac[i]=fac[i-]*i%mod; scanf("%d%d",&n,&k);
for(int i=;i<=n;i++){
scanf("%d",&l[i]);
scanf("%d",&r[i]);
}
vector<pair<int,int> >op;
for(int i=;i<=n;i++){ //离散化
op.push_back(make_pair(l[i]-,)); //区间加法标记
op.push_back(make_pair(r[i],-));
}
sort(op.begin(),op.end()); //升序排序
long long ans = ; //初始化
int cnt=;
int la=-2e9;
for(int i=;i<op.size();i++){ //计算每点的贡献
ans=(ans+C(cnt,k)*(op[i].first-la))%mod;
la=op[i].first;
cnt+=op[i].second; //该点的前缀和就是该点的出现次数
}
cout<<ans<<endl;
}
Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】的更多相关文章
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合
E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元
E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem
题目链接:传送门 题目大意:给你n个区间,求任意k个区间交所包含点的数目之和. 题目思路:将n个区间都离散化掉,然后对于一个覆盖的区间,如果覆盖数cnt>=k,则数目应该加上 区间长度*(cnt ...
- Codeforces Round #410 (Div. 2)C. Mike and gcd problem
题目连接:http://codeforces.com/contest/798/problem/C C. Mike and gcd problem time limit per test 2 secon ...
- Codeforces Round #361 (Div. 2) C. Mike and Chocolate Thieves 二分
C. Mike and Chocolate Thieves 题目连接: http://www.codeforces.com/contest/689/problem/C Description Bad ...
- Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs
B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...
- Codeforces Round #361 (Div. 2) A. Mike and Cellphone 水题
A. Mike and Cellphone 题目连接: http://www.codeforces.com/contest/689/problem/A Description While swimmi ...
- Codeforces Round #361 (Div. 2)——B. Mike and Shortcuts(BFS+小坑)
B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input standa ...
- Codeforces Round #361 (Div. 2)A. Mike and Cellphone
A. Mike and Cellphone time limit per test 1 second memory limit per test 256 megabytes input standar ...
随机推荐
- (转)Linux SSH批量分发管理
Linux SSH批量分发管理 原文:http://blog.51cto.com/chenfage/1831166 第1章 SSH服务基础介绍 1.1 SSH服务 1.1.1SSH介绍 SSH是Sec ...
- apache CXF quickstart
1下载 官网: cxf.apache.org 下载 CXF 的开发包: 解压上面的 zip 文件 : 2介绍 1什么是cxf Apache CXF™ is an open source service ...
- Linux分区扩容
lz在MAC上面使用Linux虚拟机,开始只建了一个分区,挂载在”/”目录下.现在硬盘空间不够了,所以lz就来给这个分区扩容. 首先,当然是要给虚拟机分配更多的硬盘空间喽(lz用的是VMware Fu ...
- SpringBoot - 工程搭建
SpringBoot 简介 1.Spring 的封装.其设计目的是用来简化 Spring 应用的初始搭建以及开发过程. 2.SpringCloud 微服务的基础 搭建环境 jdk 1.8 + mave ...
- 精简版LINUX系统---wdOS
wdOS是一个基于CentOS版本精简优化过的Linux服务器系统,网站服务器系统并集成nginx,apache,php,mysql等web应用环境及wdcp管理系统,安装完系统,所有的都安装完成装好 ...
- java I/O流 温习随笔
java I/O流的熟练掌握是十分重要的. 在我的理解中,I/O流可以分为两种:字符流.字节流.字符流就是可以用来传输字符的流,比如传输txt文本,简单的说,只有能被电脑中的记事本直接打开并且你能看懂 ...
- C# 面试题二
1. 请编程实现一个冒泡排序算法? int [] array = new int [*] ; ; ; i < array.Length - ; i++) { ; j < ar ...
- SpringSecurity 3.2入门(8)自定义权限控制数据库设计
; -- ---------------------------- -- Table structure for t_system_authority_info -- ---------------- ...
- MVC5 model常见的写法
1.数据库表中为ID的字段 [Key] //关键字 [Required] //不为空 [Display(Name = "ID")] public int id { get; set ...
- Spring学习笔记:Spring概述,第一个IoC依赖注入案例
一.Spring的优点 企业及系统: 1.大规模:用户数量多.数据规模大.功能众多 2.性能和安全要求高 3.业务复杂 4.灵活应变 Java技术:高入侵式依赖EJB技术框架-->Spring框 ...