Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
任意门:http://codeforces.com/contest/689/problem/E
E. Mike and Geometry Problem
3 seconds
256 megabytes
standard input
standard output
Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's define f([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that
). You are given two integers nand k and n closed intervals [li, ri] on OX axis and you have to find:

In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.
As the answer may be very large, output it modulo 1000000007 (109 + 7).
Mike can't solve this problem so he needs your help. You will help him, won't you?
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.
Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.
Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.
3 2
1 2
1 3
2 3
5
3 3
1 3
1 3
1 3
3
3 1
1 2
2 3
3 4
6
In the first example:
;
;
.
So the answer is 2 + 1 + 2 = 5.
大概题意:
有 N 个区间, 从其中取 K 个区间。所以有 C(N, K)种组合, 求每种组合区间交集长度的总和。
解题思路:
丢开区间的角度,从每个结点的角度来看,其实每个结点的贡献是 C(cnt, K) cnt 为该结点出现的次数, 所以只要O(N)扫一遍统计每个结点的贡献就是答案。
思路清晰,但考虑到数据的规模,这里需要注意和需要用到两个技巧:
一是离散化,这里STL里的 vector 和 pair 结合用,结合区间加法的思想进行离散化。
二是求组合数时 除数太大,考虑到精度问题需要用逆元来计算。
AC code:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+;
const int mod = 1e9+;
long long fac[maxn]; long long qpow(long long a,long long b) //快速幂
{
long long ans=;a%=mod;
for(long long i=b;i;i>>=,a=a*a%mod)
if(i&)ans=ans*a%mod;
return ans;
} long long C(long long n,long long m) //计算组合数
{
if(m>n||m<)return ;
long long s1=fac[n], s2=fac[n-m]*fac[m]%mod; //除数太大,逆元处理
return s1*qpow(s2,mod-)%mod;
}
int n,k;
int l[maxn],r[maxn]; //左端点, 右端点
int main()
{
fac[]=;
for(int i=;i<maxn;i++) //预处理全排列
fac[i]=fac[i-]*i%mod; scanf("%d%d",&n,&k);
for(int i=;i<=n;i++){
scanf("%d",&l[i]);
scanf("%d",&r[i]);
}
vector<pair<int,int> >op;
for(int i=;i<=n;i++){ //离散化
op.push_back(make_pair(l[i]-,)); //区间加法标记
op.push_back(make_pair(r[i],-));
}
sort(op.begin(),op.end()); //升序排序
long long ans = ; //初始化
int cnt=;
int la=-2e9;
for(int i=;i<op.size();i++){ //计算每点的贡献
ans=(ans+C(cnt,k)*(op[i].first-la))%mod;
la=op[i].first;
cnt+=op[i].second; //该点的前缀和就是该点的出现次数
}
cout<<ans<<endl;
}
Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】的更多相关文章
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合
E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元
E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem
题目链接:传送门 题目大意:给你n个区间,求任意k个区间交所包含点的数目之和. 题目思路:将n个区间都离散化掉,然后对于一个覆盖的区间,如果覆盖数cnt>=k,则数目应该加上 区间长度*(cnt ...
- Codeforces Round #410 (Div. 2)C. Mike and gcd problem
题目连接:http://codeforces.com/contest/798/problem/C C. Mike and gcd problem time limit per test 2 secon ...
- Codeforces Round #361 (Div. 2) C. Mike and Chocolate Thieves 二分
C. Mike and Chocolate Thieves 题目连接: http://www.codeforces.com/contest/689/problem/C Description Bad ...
- Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs
B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...
- Codeforces Round #361 (Div. 2) A. Mike and Cellphone 水题
A. Mike and Cellphone 题目连接: http://www.codeforces.com/contest/689/problem/A Description While swimmi ...
- Codeforces Round #361 (Div. 2)——B. Mike and Shortcuts(BFS+小坑)
B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input standa ...
- Codeforces Round #361 (Div. 2)A. Mike and Cellphone
A. Mike and Cellphone time limit per test 1 second memory limit per test 256 megabytes input standar ...
随机推荐
- 切换myEclipse工作空间后设置,myEclipse添加注释/设置豆沙背景颜色/调节字体大小
一.添加注释 操作位置: 注释规范 Files/** * @文件名称: ${file_name} * @文件路径: ${package_name} * @功能描述: ${todo} * @作者: ${ ...
- TeamCity 持续集成工具
https://www.jetbrains.com/teamcity/ null
- 你的UI设计够不够趣味性
这周要做一个设计,在研究怎么修改的时候,想到了要加入一些符合产品调性的趣味设计,但是要怎么加入才能增加用户对产品的印象,进而增加好感与认可呢,我们今天就来研究一下很多有意思的APP里的一些趣味设计. ...
- python 爬虫系列03--职位爬虫
职位爬虫 import requests from lxml import etree cookie = { 'Cookie':'user_trace_token=20181015184304-692 ...
- 安装Newton版Swift,配合keystone认证
主控节点安装配置 Keystone 认证服务 主控节点 IP:192.168.81.11 yum install centos-release-openstack-newton -y yum upda ...
- Tomcat配置自定义访问日志 --- 获取请求头部信息
使用tomcat,搭建完个人网站后,默认记录来访游客的信息是十分有限的,主要有ip和路径以及方法等. 有时候为了获取更多来访信息,比如请求的头部信息,这个时候就需要我们手动配置log了. 开始 进入T ...
- 防盗链与springboot代理模式(图片文件转发)
在搭建自己的博客网站的时候,很有可能要引入一些外部图片,毕竟多数人最开始不是在自己的平台上写博客. 因某种需要,搬运自己以前写的博客到自己的网站时,在图片这一步可能会出现问题,无法显示.其中往往就是防 ...
- JQuery脚本-通过禁用按钮防止表单重复提交
<script type="text/javascript"> /* jquer 脚本,避免重复提交 隐藏点击的submit,后在他之后插入同名button伪装成被隐藏 ...
- centos 6.5搭建LNMP环境
1:查看环境: 1 2 [root@10-4-14-168 html]# cat /etc/redhat-release CentOS release 6.5 (Final) 2:关掉防火墙 1 [r ...
- django(6)model表语句操作、Form操作、序列化操作
1.model建表操作之创建索引.元数据 # 单表操作,创建表 class User(models.Model): name = models.CharField(max_length=32) ema ...