任意门:http://codeforces.com/contest/689/problem/E

E. Mike and Geometry Problem

time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's define f([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers nand k and n closed intervals [li, ri] on OX axis and you have to find:

In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.

As the answer may be very large, output it modulo 1000000007 (109 + 7).

Mike can't solve this problem so he needs your help. You will help him, won't you?

Input

The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.

Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.

Output

Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.

Examples
input

Copy
3 2
1 2
1 3
2 3
output

Copy
5
input

Copy
3 3
1 3
1 3
1 3
output

Copy
3
input

Copy
3 1
1 2
2 3
3 4
output

Copy
6
Note

In the first example:

;

;

.

So the answer is 2 + 1 + 2 = 5.

大概题意:

有 N 个区间, 从其中取 K 个区间。所以有 C(N, K)种组合, 求每种组合区间交集长度的总和。

解题思路:

丢开区间的角度,从每个结点的角度来看,其实每个结点的贡献是 C(cnt, K) cnt 为该结点出现的次数, 所以只要O(N)扫一遍统计每个结点的贡献就是答案。

思路清晰,但考虑到数据的规模,这里需要注意和需要用到两个技巧:

一是离散化,这里STL里的 vector 和 pair 结合用,结合区间加法的思想进行离散化。

二是求组合数时 除数太大,考虑到精度问题需要用逆元来计算。

AC code:

 #include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+;
const int mod = 1e9+;
long long fac[maxn]; long long qpow(long long a,long long b) //快速幂
{
long long ans=;a%=mod;
for(long long i=b;i;i>>=,a=a*a%mod)
if(i&)ans=ans*a%mod;
return ans;
} long long C(long long n,long long m) //计算组合数
{
if(m>n||m<)return ;
long long s1=fac[n], s2=fac[n-m]*fac[m]%mod; //除数太大,逆元处理
return s1*qpow(s2,mod-)%mod;
}
int n,k;
int l[maxn],r[maxn]; //左端点, 右端点
int main()
{
fac[]=;
for(int i=;i<maxn;i++) //预处理全排列
fac[i]=fac[i-]*i%mod; scanf("%d%d",&n,&k);
for(int i=;i<=n;i++){
scanf("%d",&l[i]);
scanf("%d",&r[i]);
}
vector<pair<int,int> >op;
for(int i=;i<=n;i++){ //离散化
op.push_back(make_pair(l[i]-,)); //区间加法标记
op.push_back(make_pair(r[i],-));
}
sort(op.begin(),op.end()); //升序排序
long long ans = ; //初始化
int cnt=;
int la=-2e9;
for(int i=;i<op.size();i++){ //计算每点的贡献
ans=(ans+C(cnt,k)*(op[i].first-la))%mod;
la=op[i].first;
cnt+=op[i].second; //该点的前缀和就是该点的出现次数
}
cout<<ans<<endl;
}

Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】的更多相关文章

  1. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合

    E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...

  2. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元

    E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...

  3. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem

    题目链接:传送门 题目大意:给你n个区间,求任意k个区间交所包含点的数目之和. 题目思路:将n个区间都离散化掉,然后对于一个覆盖的区间,如果覆盖数cnt>=k,则数目应该加上 区间长度*(cnt ...

  4. Codeforces Round #410 (Div. 2)C. Mike and gcd problem

    题目连接:http://codeforces.com/contest/798/problem/C C. Mike and gcd problem time limit per test 2 secon ...

  5. Codeforces Round #361 (Div. 2) C. Mike and Chocolate Thieves 二分

    C. Mike and Chocolate Thieves 题目连接: http://www.codeforces.com/contest/689/problem/C Description Bad ...

  6. Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs

    B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...

  7. Codeforces Round #361 (Div. 2) A. Mike and Cellphone 水题

    A. Mike and Cellphone 题目连接: http://www.codeforces.com/contest/689/problem/A Description While swimmi ...

  8. Codeforces Round #361 (Div. 2)——B. Mike and Shortcuts(BFS+小坑)

    B. Mike and Shortcuts time limit per test 3 seconds memory limit per test 256 megabytes input standa ...

  9. Codeforces Round #361 (Div. 2)A. Mike and Cellphone

    A. Mike and Cellphone time limit per test 1 second memory limit per test 256 megabytes input standar ...

随机推荐

  1. postgresql数据库primary key约束/not null约束/unique约束及default值的添加与删除、列的新增/删除/重命名/数据类型的更改

    如果在建表时没有加primary key约束.not null约束.unique约束.default值,而是创建完表之后在某个字段添加的话 1.primary key约束的添加与删除 给red_pac ...

  2. spring对异步的支持

    spring中异步方法的配置 1.在web.xml文件中设置org.springframework.web.servlet.DispatcherServlet的async-supported属性为tr ...

  3. GraphQL 暂停

    别人的文章 http://blog.csdn.net/imwebteam/article/details/53888708 Java 文档都打不开,已经在GitHub上提了 in README.md ...

  4. BaaS_后端即服务 RESTful

    码云coding API https://open.coding.net/ Swagger 官网用VPN能流畅打开,但它自己的基于web的编辑器不行 用来设计RESTful API LeanCloud ...

  5. 负载均衡服务器中存在大量的TIME_WAIT怎么解决

    首先需要明白什么是TIME_WAIT.TIME_WAIT是在tcp断开连接时进行四次回收的时候,主动断开端在收到被动关闭端的FIN包并发送ACK包给被动关闭后进入的状态.这个状态默认情况下是2倍的MS ...

  6. js实现CkeckBox全选与反选

    全选与反选 function SelectAll(){ var check = document.getElementsByTagName("input"); // 获取所有inp ...

  7. jQuery对新添加的控件添加响应事件

    1. 通过id和类控制 <html> <head> <script src="jquery.js"></script> <sc ...

  8. React.js 小书 Lesson15 - 实战分析:评论功能(二)

    作者:胡子大哈 原文链接:http://huziketang.com/books/react/lesson15 转载请注明出处,保留原文链接和作者信息. 上一节我们构建了基本的代码框架,现在开始完善其 ...

  9. XML再深入

    XML 命名空间 XML 命名空间提供避免元素命名冲突的方法. 使用前缀来避免命名冲突 在 XML 中的命名冲突可以通过使用名称前缀从而容易地避免. 该 XML 携带某个 HTML 表格和某件家具的信 ...

  10. PAT 1059. Prime Factors

    反正知道了就是知道,不知道也想不到,很快 #include <cstdio> #include <cstdlib> #include <vector> using ...