拓展kmp是对KMP算法的扩展,它解决如下问题:

定义母串S,和字串T,设S的长度为n,T的长度为m,求T与S的每一个后缀的最长公共前缀,也就是说,设extend数组,extend[i]表示T与S[i,n-1]的最长公共前缀,要求出所有extend[i](0<=i<n)。

注意到,如果有一个位置extend[i]=m,则表示T在S中出现,而且是在位置i出现,这就是标准的KMP问题,所以说拓展kmp是对KMP算法的扩展,所以一般将它称为扩展KMP算法。

下面举一个例子,S=”aaaabaa”,T=”aaaaa”,首先,计算extend[0]时,需要进行5次匹配,直到发生失配。

从而得知extend[0]=4,下面计算extend[1],在计算extend[1]时,是否还需要像计算extend[0]时从头开始匹配呢?答案是否定的,因为通过计算extend[0]=4,从而可以得出S[0,3]=T[0,3],进一步可以得到 S[1,3]=T[1,3],计算extend[1]时,事实上是从S[1]开始匹配,设辅助数组next[i]表示T[i,m-1]和T的最长公共前缀长度。在这个例子中,next[1]=4,即T[0,3]=T[1,4],进一步得到T[1,3]=T[0,2],所以S[1,3]=T[0,2],所以在计算extend[1]时,通过extend[0]的计算,已经知道S[1,3]=T[0,2],所以前面3个字符已经不需要匹配,直接匹配S[4]和T[3]即可,这时一次就发生失配,所以extend[1]=3。这个例子很有代表性,有兴趣的读者可以继续计算完剩下的extend数组。

1. 拓展kmp算法一般步骤

通过上面的例子,事实上已经体现了拓展kmp算法的思想,下面来描述拓展kmp算法的一般步骤。

首先我们从左到右依次计算extend数组,在某一时刻,设extend[0...k]已经计算完毕,并且之前匹配过程中所达到的最远位置为P,所谓最远位置,严格来说就是i+extend[i]-1的最大值(0<=i<=k),并且设取这个最大值的位置为po,如在上一个例子中,计算extend[1]时,P=3,po=0。

现在要计算extend[k+1],根据extend数组的定义,可以推断出S[po,P]=T[0,P-po],从而得到 S[k+1,P]=T[k-po+1,P-po],令len=next[k-po+1],(回忆下next数组的定义),分两种情况讨论:

第一种情况:k+len<P

如下图所示:

上图中,S[k+1,k+len]=T[0,len-1],然后S[k+len+1]一定不等于T[len],因为如果它们相等,则有S[k+1,k+len+1]=T[k+po+1,k+po+len+1]=T[0,len],那么next[k+po+1]=len+1,这和next数组的定义不符(next[i]表示T[i,m-1]和T的最长公共前缀长度),所以在这种情况下,不用进行任何匹配,就知道extend[k+1]=len。

第二种情况: k+len>=P

如下图:

上图中,S[p+1]之后的字符都是未知的,也就是还未进行过匹配的字符串,所以在这种情况下,就要从S[P+1]和T[P-k+1]开始一一匹配,直到发生失配为止,当匹配完成后,如果得到的extend[k+1]+(k+1)大于P则要更新未知P和po。

至此,拓展kmp算法的过程已经描述完成,细心地读者可能会发现,next数组是如何计算还没有进行说明,事实上,计算next数组的过程和计算extend[i]的过程完全一样,将它看成是以T为母串,T为字串的特殊的拓展kmp算法匹配就可以了,计算过程中的next数组全是已经计算过的,所以按照上述介绍的算法计算next数组即可,这里不再赘述。

2. 时间复杂度分析

下面来分析一下算法的时间复杂度,通过上面的算法介绍可以知道,对于第一种情况,无需做任何匹配即可计算出extend[i],对于第二种情况,都是从未被匹配的位置开始匹配,匹配过的位置不再匹配,也就是说对于母串的每一个位置,都只匹配了一次,所以算法总体时间复杂度是O(n)的,同时为了计算辅助数组next[i]需要先对字串T进行一次拓展kmp算法处理,所以拓展kmp算法的总体复杂度为O(n+m)的。其中n为母串的长度,m为子串的长度。

参考:http://blog.csdn.net/dyx404514/article/details/41831947

扩展KMP(转)的更多相关文章

  1. 扩展KMP算法

    一 问题定义 给定母串S和子串T,定义n为母串S的长度,m为子串T的长度,suffix[i]为第i个字符开始的母串S的后缀子串,extend[i]为suffix[i]与字串T的最长公共前缀长度.求出所 ...

  2. 扩展KMP --- HDU 3613 Best Reward

    Best Reward Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=3613 Mean: 给你一个字符串,每个字符都有一个权 ...

  3. KMP和扩展KMP

    文章网上太多这里提一下代码细节: KMP: scanf("%s\n",s); scanf("%s\n",t); int ls=strlen(s),lt=strl ...

  4. UVA5876 Writings on the Wall 扩展KMP

    扩展KMP的简单题. #include<stdio.h> #include<string.h> #define maxn 51010 char s[maxn],t[maxn]; ...

  5. hdu4333 扩展KMP

    慢慢研究可以发现,可以用扩展kmp来求.由于扩展kmp的next[]只有一部分,当前位子前面那部分和母串的后部分,所以可以将字符串复制接在后面一次. 先求如果next[]>0&& ...

  6. 扩展KMP

    刘雅琼论文 http://wenku.baidu.com/view/8e9ebefb0242a8956bece4b3.html 论文讲的非常详细. 给定母串S,子串T,n=strlen(S),m=st ...

  7. HDU 3336 扩展kmp

    题目大意: 找到字符串中所有和前缀字符串相同的子串的个数 对于这种前缀的问题,通常通过扩展kmp来解决 其实吧这是我第一次做扩展kmp的题目,原来确实看过这个概念,今天突然做到,所以这个扩展kmp的模 ...

  8. acdream1116 Gao the string!(扩展KMP)

    今天是字符串填坑的一天,首先填的第一个坑是扩展KMP.总结一下KMP和扩展KMP的区别. 在这里s是主串,t是模式串. KMP可以求出的是以s[i]为结尾的串和 t前缀匹配的最长的长度.假如这个长度是 ...

  9. hdu 4333(扩展kmp)

    题意:就是给你一个数字,然后把最后一个数字放到最前面去,经过几次变换后又回到原数字,问在这些数字中,比原数字小的,相等的,大的分别有多少个.比如341-->134-->413-->3 ...

  10. 扩展KMP题目

    hdu4333 /* 题意:字符串s[0..n-1],每次把最后一个字符放到前面,求形成的字符串比最初串分别小,相同,大于的个数 因为是为了练习扩展KMP所以肯定是扩展KMP, 为了循环方便,在后面复 ...

随机推荐

  1. python 数学操作符

    优先级从高到低 print("2 ** 3 = %d" % 2 ** 3) 2 ** 3 = 8print("7 % 2 = {}".format(7 % 2) ...

  2. (八)solr7实现搜索框的自动提示并统计词频

     solr7实现搜索框的自动提示并统计词频 1:用solr 的suggest组件,统计词频相对麻烦. 2:用TermsComponent,自带词频统计功能. Terms组件提供访问索引项的字段和每个词 ...

  3. pycharm中格式标准化代码

    点击之后,可以使代码标准化

  4. Exploiting second-order SQL injection 利用二阶注入获取数据库版本信息 SQL Injection Attacks and Defense Second Edition

    w SQL Injection Attacks and Defense  Second Edition Exploiting second-order SQL injection Virtually ...

  5. redis add 'vm.overcommit_memory = 1' to /etc/sysctl.conf

    w root@well:/etc# vim sysctl.conf #kernel.domainname = example.com # # /etc/sysctl.conf - Configurat ...

  6. 使用QFuture类监控异步计算的结果

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/Amnes1a/article/details/65630701在Qt中,为我们提供了好几种使用线程的 ...

  7. MySQL错误日志提示innodb_table_stats和innodb_index_stats不存在故障处理

    查看MySQL error日志,发现有如下报错 7efbc586f700 InnoDB: Error: Table "mysql"."innodb_table_stats ...

  8. 深度学习:Keras入门(二)之卷积神经网络(CNN)(转)

    转自http://www.cnblogs.com/lc1217/p/7324935.html 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的 ...

  9. HTTP1.1中CHUNKED编码解析

    一般HTTP通信时,会使用Content-Length头信息性来通知用户代理(通常意义上是浏览器)服务器发送的文档内容长度,该头信息定义于HTTP1.0协议RFC  1945  10.4章节中.浏览器 ...

  10. 通用TryParse

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Refle ...