扩展KMP(转)
拓展kmp是对KMP算法的扩展,它解决如下问题:
定义母串S,和字串T,设S的长度为n,T的长度为m,求T与S的每一个后缀的最长公共前缀,也就是说,设extend数组,extend[i]表示T与S[i,n-1]的最长公共前缀,要求出所有extend[i](0<=i<n)。
注意到,如果有一个位置extend[i]=m,则表示T在S中出现,而且是在位置i出现,这就是标准的KMP问题,所以说拓展kmp是对KMP算法的扩展,所以一般将它称为扩展KMP算法。
下面举一个例子,S=”aaaabaa”,T=”aaaaa”,首先,计算extend[0]时,需要进行5次匹配,直到发生失配。
从而得知extend[0]=4,下面计算extend[1],在计算extend[1]时,是否还需要像计算extend[0]时从头开始匹配呢?答案是否定的,因为通过计算extend[0]=4,从而可以得出S[0,3]=T[0,3],进一步可以得到 S[1,3]=T[1,3],计算extend[1]时,事实上是从S[1]开始匹配,设辅助数组next[i]表示T[i,m-1]和T的最长公共前缀长度。在这个例子中,next[1]=4,即T[0,3]=T[1,4],进一步得到T[1,3]=T[0,2],所以S[1,3]=T[0,2],所以在计算extend[1]时,通过extend[0]的计算,已经知道S[1,3]=T[0,2],所以前面3个字符已经不需要匹配,直接匹配S[4]和T[3]即可,这时一次就发生失配,所以extend[1]=3。这个例子很有代表性,有兴趣的读者可以继续计算完剩下的extend数组。
1. 拓展kmp算法一般步骤
通过上面的例子,事实上已经体现了拓展kmp算法的思想,下面来描述拓展kmp算法的一般步骤。
首先我们从左到右依次计算extend数组,在某一时刻,设extend[0...k]已经计算完毕,并且之前匹配过程中所达到的最远位置为P,所谓最远位置,严格来说就是i+extend[i]-1的最大值(0<=i<=k),并且设取这个最大值的位置为po,如在上一个例子中,计算extend[1]时,P=3,po=0。
现在要计算extend[k+1],根据extend数组的定义,可以推断出S[po,P]=T[0,P-po],从而得到 S[k+1,P]=T[k-po+1,P-po],令len=next[k-po+1],(回忆下next数组的定义),分两种情况讨论:
第一种情况:k+len<P
如下图所示:
上图中,S[k+1,k+len]=T[0,len-1],然后S[k+len+1]一定不等于T[len],因为如果它们相等,则有S[k+1,k+len+1]=T[k+po+1,k+po+len+1]=T[0,len],那么next[k+po+1]=len+1,这和next数组的定义不符(next[i]表示T[i,m-1]和T的最长公共前缀长度),所以在这种情况下,不用进行任何匹配,就知道extend[k+1]=len。
第二种情况: k+len>=P
如下图:
上图中,S[p+1]之后的字符都是未知的,也就是还未进行过匹配的字符串,所以在这种情况下,就要从S[P+1]和T[P-k+1]开始一一匹配,直到发生失配为止,当匹配完成后,如果得到的extend[k+1]+(k+1)大于P则要更新未知P和po。
至此,拓展kmp算法的过程已经描述完成,细心地读者可能会发现,next数组是如何计算还没有进行说明,事实上,计算next数组的过程和计算extend[i]的过程完全一样,将它看成是以T为母串,T为字串的特殊的拓展kmp算法匹配就可以了,计算过程中的next数组全是已经计算过的,所以按照上述介绍的算法计算next数组即可,这里不再赘述。
2. 时间复杂度分析
下面来分析一下算法的时间复杂度,通过上面的算法介绍可以知道,对于第一种情况,无需做任何匹配即可计算出extend[i],对于第二种情况,都是从未被匹配的位置开始匹配,匹配过的位置不再匹配,也就是说对于母串的每一个位置,都只匹配了一次,所以算法总体时间复杂度是O(n)的,同时为了计算辅助数组next[i]需要先对字串T进行一次拓展kmp算法处理,所以拓展kmp算法的总体复杂度为O(n+m)的。其中n为母串的长度,m为子串的长度。
参考:http://blog.csdn.net/dyx404514/article/details/41831947
扩展KMP(转)的更多相关文章
- 扩展KMP算法
一 问题定义 给定母串S和子串T,定义n为母串S的长度,m为子串T的长度,suffix[i]为第i个字符开始的母串S的后缀子串,extend[i]为suffix[i]与字串T的最长公共前缀长度.求出所 ...
- 扩展KMP --- HDU 3613 Best Reward
Best Reward Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=3613 Mean: 给你一个字符串,每个字符都有一个权 ...
- KMP和扩展KMP
文章网上太多这里提一下代码细节: KMP: scanf("%s\n",s); scanf("%s\n",t); int ls=strlen(s),lt=strl ...
- UVA5876 Writings on the Wall 扩展KMP
扩展KMP的简单题. #include<stdio.h> #include<string.h> #define maxn 51010 char s[maxn],t[maxn]; ...
- hdu4333 扩展KMP
慢慢研究可以发现,可以用扩展kmp来求.由于扩展kmp的next[]只有一部分,当前位子前面那部分和母串的后部分,所以可以将字符串复制接在后面一次. 先求如果next[]>0&& ...
- 扩展KMP
刘雅琼论文 http://wenku.baidu.com/view/8e9ebefb0242a8956bece4b3.html 论文讲的非常详细. 给定母串S,子串T,n=strlen(S),m=st ...
- HDU 3336 扩展kmp
题目大意: 找到字符串中所有和前缀字符串相同的子串的个数 对于这种前缀的问题,通常通过扩展kmp来解决 其实吧这是我第一次做扩展kmp的题目,原来确实看过这个概念,今天突然做到,所以这个扩展kmp的模 ...
- acdream1116 Gao the string!(扩展KMP)
今天是字符串填坑的一天,首先填的第一个坑是扩展KMP.总结一下KMP和扩展KMP的区别. 在这里s是主串,t是模式串. KMP可以求出的是以s[i]为结尾的串和 t前缀匹配的最长的长度.假如这个长度是 ...
- hdu 4333(扩展kmp)
题意:就是给你一个数字,然后把最后一个数字放到最前面去,经过几次变换后又回到原数字,问在这些数字中,比原数字小的,相等的,大的分别有多少个.比如341-->134-->413-->3 ...
- 扩展KMP题目
hdu4333 /* 题意:字符串s[0..n-1],每次把最后一个字符放到前面,求形成的字符串比最初串分别小,相同,大于的个数 因为是为了练习扩展KMP所以肯定是扩展KMP, 为了循环方便,在后面复 ...
随机推荐
- Android UI开发第二十六篇——Fragment间的通信
为了重用Fragment的UI组件,创建的每个Fragment都应该是自包含的.有它自己的布局和行为的模块化组件.一旦你定义了这些可重用的Fragment,你就可以把它们跟一个Activity关联,并 ...
- Bootstrap(Web前端CSS框架)
官方定义: Bootstrap is the most popular HTML, CSS, and JS framework for developing responsive, mobile fi ...
- Time-series Storage Layer Time Series Databases 时间序列
w 关于时间序列数据库的思考-CSDN.NET http://www.csdn.net/article/2015-07-13/2825192 存储和处理时间序列数据(“Time Series Da ...
- Django 请求生命周期【图示】
Django 请求生命周期
- Python3.6全栈开发实例[012]
12.输出商品列表,用户输入序号,显示用户选中的商品(升级题) 商品列表: goods = [{"name": "电脑", "price": ...
- (4.13)SQL Server profile使用、数据库优化引擎顾问使用
SQL Server profile使用技巧 介绍 经常会有人问profile工具该怎么使用?有没有方法获取性能差的sql的问题.自从转mysql我自己也差不多2年没有使用profile,忽然prof ...
- javaweb action无法跳转、表单无法跳转的解决方法
action无法跳转,表单无法跳转的解决方法 刚在网上搜索了一下,发现我的这篇文章已被非常多人转载了去其他站点.暗爽,只是还是希望大家注明出处. 顺便说明一下.下面是在struts2中通过測试的 ac ...
- git发布代码到github
git是什么? 1.git主要是用于对版本进行管理的一个系统. 2.时刻保持数据完整性:SHA-1计算 3.文件的三种状态 已提交,已修改,已暂存 对应文件流转的三个工作区域:本地仓库,Git的工作目 ...
- 20170401 错了两天的-XML解析
你不找到的话,错误就在那里.你找到了错误才会成为财富! Strans XML 解析3要素:1.源xml 格式正常, eg. '<?xml version="1.0" enco ...
- 请写一个python逻辑,计算一个文件中的大写字母数量
import os os.chdir(r'C:\Users\Administrator\Desktop')#os.chdir切换到指定目录 with open('a.txt') as today: c ...