传送门

怎么说呢,一道不可多得的反演题吧,具体解释之后再补

 #include <bits/stdc++.h>
 using namespace std;
 #define rep(i,a,b) for(int i=a;i<=b;++i)
 typedef long long ll;
 ;
 ll mul(ll x,ll y,ll p) {
     x%=p; y%=p;
     return (x*y-(ll)((long double)x/p*y+0.5)*p+p)%p;
 }
 ll _pow(ll x,ll n,ll p) {
     ll ret=;
     ,x=mul(x,x,p)) ) ret=mul(ret,x,p);
     return ret;
 }
 ll tp[]={2LL,3LL,5LL,7LL,13LL,61LL};
 bool MR(ll n) {
     ) return false;
     rep(i,,) if(n==tp[i]) return true;
     rep(i,,) ) return false;
     rep(i,,) {
         ll tmp=n-;)) tmp>>=;
         ll s=_pow(tp[i],tmp,n);
         &&s!=&&tmp!=n-) tmp<<=,s=mul(s,s,n);
         &&!(tmp&)) return false;
     }
     return true;
 }
 ll PR(ll n,ll c) {
     ll i=,k=2LL,x,y; x=y=1LL+rand()%(n-);
     ) {
         x=(mul(x,x,n)+c)%n;
         ll d=__gcd((y-x+n)%n,n);
         &&d!=n) return d;
         if(x==y) return n;
         ;
     }
 }
 int op[maxn],len,cnt,T;
 ll n,P,K,ans,gt[maxn];
 inline void fct(ll n) {
     ) return;
     if(MR(n)){gt[++len]=n;return;}
     ll p=n;
     ;p==n;--c) p=PR(p,c);
     fct(p); fct(n/p);
 }
 ll fpow(ll x,ll n,ll p) {
     ll ret=;
     ,x=x*x%p)
         ) ret=ret*x%p;
     return ret;
 }
 ll g(ll n) {,P);}
 ll f(ll n) {?n%P:(n>>)%P;}
 inline void dfs(int dp,ll d,ll pro) {
     ) {
         )&&(d&)==) return;
         (ans+=1LL*g(n/d)*f(n/d)%P*pro%P)%=P;
         return;
     }
     dfs(dp+,d,pro); pro=1LL*pro*(+P-gt[dp]%P)%P;
     rep(i,,op[dp]) d*=gt[dp],dfs(dp+,d,pro);
 }
 int main() {
 #ifndef ONLINE_JUDGE
     freopen("25.in","r",stdin);
 #endif
     scanf();
     while(T--) {
         scanf("%lld%lld%lld",&n,&K,&P);K%=P;
         len=cnt=;++cnt;
         memset(gt,,,sizeof(op));
         fct(n);
         sort(gt+,gt++len);
         rep(i,,len) {
             ;
             ++op[cnt];
         }
         ans=;dfs(,1LL,1LL);printf("%lld\n",ans);
     }
     ;
 }

[BZOJ 5330][SDOI2018] 反回文串的更多相关文章

  1. BZOJ 5330 Luogu P4607 [SDOI2018]反回文串 (莫比乌斯反演、Pollard Rho算法)

    题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/prob ...

  2. [BZOJ5330][SDOI2018]反回文串

    luogu bzoj sol 枚举一个长度为\(n\)为回文串,它的所有循环位移都可以产生贡献. 但是这样算重了.重复的地方在于可能多个回文串循环同构,或者可能有的回文串经过小于\(n\)次循环位移后 ...

  3. [SDOI2018]反回文串

    题意 问有多少个长度为\(N\)且字符集大小为\(K\)的字符串可以通过回文串旋转 (把第一个字符移到最后)若干次得到.\(K\le N≤10^{18}\) 做法 ARC64F的加强版 设\(h(d) ...

  4. 【SDOI2018】反回文串(【ARC064 F】Rotated Palindromes 加强版)

    题意 给你一个正整数 \(n\),求有多少字符集为 \(1\) 到 \(k\) 之间整数的字符串,使得该字符串可以由一个长度为 \(n\) 的回文串循环移位得到. ARC原题 \(100\%\) 的数 ...

  5. BZOJ 3676: [Apio2014]回文串

    3676: [Apio2014]回文串 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 2013  Solved: 863[Submit][Status ...

  6. bzoj 3676: [Apio2014]回文串 回文自动机

    3676: [Apio2014]回文串 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 844  Solved: 331[Submit][Status] ...

  7. 字符串(马拉车算法,后缀数组,稀疏表):BZOJ 3676 [Apio2014]回文串

    Description 考虑一个只包含小写拉丁字母的字符串s.我们定义s的一个子串t的“出 现值”为t在s中的出现次数乘以t的长度.请你求出s的所有回文子串中的最 大出现值. Input 输入只有一行 ...

  8. ●BZOJ 3676 [Apio2014]回文串

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3676 题解: 后缀数组,Manacher,二分 首先有一个结论:一个串的本质不同的回文串的个 ...

  9. 「SDOI 2018」反回文串

    题目大意: 求字符集大小为$k$长度为$n$的经循环移位后为回文串的数量. 题解: 这题是D1里最神的吧 考虑一个长度为$n$回文串,将其循环移位后所有的串都是满足要求的串. 但是显然这样计算会算重. ...

随机推荐

  1. 算法描述》LCA两三事(蒟蒻向)

    LCA是图论中常用的解决树形结构子问题的工具,这一问题一般需要用一个简短的子函数直接解决,但是这对于广大蒟蒻们仍然是一个不小的问题. LCA是指在树形结构中两点的最近公共祖先,对于这个问题,直接向上找 ...

  2. Solidity oraclize query apikey加密

    solidity 程序中如果用到oraclize query,api调用需要apikey,则最好加密apikey,否则公开solidity代码时会连同apikey一起公开. 加密方法: https:/ ...

  3. Process management of windows

    igfxem.exe进程是正常的进程.是intel家的核显驱动类的进程.核显即"核芯显卡",是指GPU部分它是与CPU建立在同一内核芯片上,两者完全融合的芯片."核芯显卡 ...

  4. Ajax步骤

    var request = new XMLHttpRequest(); request.open("GET","get.php",ture); request. ...

  5. try-catch-finally对返回值的影响

    catch 和 finally 一起使用的常见方式是:在 try 块中获取并使用资源,在 catch 块中处理异常情况,并在 finally 块中释放资源. finally 块用于清理try块分配的任 ...

  6. css总结13:CSS 伪类(Pseudo-classes)

    1 伪类作用:CSS伪类是用来添加一些选择器的特殊效果. 2 常用示例: 2.1anchor伪类:代码:   正常语法: a{color:#FF0000;}/* 文字颜色 */   伪类语法: a:l ...

  7. 最全面的jackson json 技术

    http://www.360doc.com/content/12/0429/09/7656232_207428466.shtml

  8. Sharepoint2013搜索学习笔记之自定义结果源(七)

    搜索中心新建好之后在搜索结果页上会默认有所有内容,人员,对话,视频这四个结果分类,每个分类会返回指定范围的搜索结果,这里我再添加了部门日志结果分类,搜索这个分类只会返回部门日志内容类型的搜索结果,要实 ...

  9. EFCore扩展Update方法(实现 Update User SET Id=Id+1)

    EFCore扩展Update方法(实现 Update User SET Id = Id + 1) 源码地址(github) 前言 EFCore在操作更新的时候往往需要先查询一遍数据,再去更新相应的字段 ...

  10. ecliplse的下载安装

    ecliplse的官方下载地址是: https://www.eclipse.org/downloads/packages/ 进去的速度可能比较慢,请耐心等待,进去之后的页面如下,为了便于理解下面的是我 ...